
Cross-Core Interrupt Detection:
Exploiting User and Virtualized IPIs

Fabian Rauscher
Graz University of Technology

Graz, Styria, Austria
fabian.rauscher@iaik.tugraz.at

Daniel Gruss
Graz University of Technology

Graz, Styria, Austria
daniel.gruss@iaik.tugraz.at

Abstract
Interrupts are fundamental for inter-process and cross-core com-
munication in modern systems. Controlling these communication
mechanisms historically requires switches into the kernel or hyper-
visor, incurring high-performance costs. To alleviate these costs,
Intel introduced new hardware mechanisms to send inter-processor
interrupts (IPIs) from user space without switching into the kernel
and from virtual machines without switching into the hypervisor.
However, it is unclear whether this direct, unsupervised interaction
between unprivileged (or virtualized) workloads and the underlying
hardware introduces a significant change in the attack surface.

In this paper, we present the IPI side channel, a novel side-
channel attack exploiting the recently introduced user interrupts
and IPI virtualization features on Intel Sapphire Rapids and the
upcoming Intel Arrow Lake processors. The IPI side channel is
the first cross-core interrupt detection side channel, allowing an
attacker to monitor interrupts delivered to any physical core of
the same processor. Our attack is based on precise measurements
of the hardware delivery time of interrupts from user space and
virtual machines. More specifically, we exploit that interrupts are
delivered through a cross-core bus, leading to timing variations
on the attacker’s local IPIs. We present multiple case studies to
compare the IPI side channel with the state of the art: First, we
present an unprivileged cross-core covert channel with a native
true capacity of 434.7 kbit/s (𝑛=100, 𝜎𝑥=0.03) and a cross-VM capac-
ity of 3.45 kbit/s (𝑛=100, 𝜎𝑥=0.01). Second, we demonstrate a native
inter-keystroke timing attack with an 𝐹1 score of 97.9%. Third, we
present an open-world website fingerprinting attack on the top 100
websites, achieving an 𝐹1 score of 89.0% in a native scenario and
an 𝐹1 score of 71.0% in a cross-VM (thin client) scenario. Further-
more, we discuss the broader context of the IPI side channels and
categorize interrupt side channels and mitigations.

CCS Concepts
• Security and privacy → Side-channel analysis and counter-
measures; Operating systems security; Systems security.

Keywords
side-channel attack, user interrupts, IPI virtualization, interrupt
detection, website fingerprinting

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690242

ACM Reference Format:
Fabian Rauscher and Daniel Gruss. 2024. Cross-Core Interrupt Detection:
Exploiting User and Virtualized IPIs. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3690242

1 Introduction
Modern computer systems are highly parallelized, with hundreds
of tasks with different privileges and access permissions that are
isolated from each other through process isolation or virtualization.
Process isolation and virtualization are enforced by the hardware
and configured by privileged software, e.g., operating system or
hypervisor [33]. However, tasks still frequently need to commu-
nicate with each other, e.g., to exchange data or synchronize op-
erations, the system software provides means for cross-process
and cross-core communication, including shared memory, signals,
pipes, and various interrupts. All of these mechanisms require in-
teraction with the system software, in some cases, e.g., for signal
and interrupts, even for every single instance. As this incurs high
context switch overheads, Intel introduced two new features called
user interrupts [35] and IPI virtualization on Intel Sapphire Rapids
processors. While these features are currently only available on
Xeon CPUs, they will be available on the next generation of Intel
consumer CPUs called Arrow Lake. User interrupts and IPI virtu-
alization are intended to minimize cross-process and cross-core
communication overheads by allowing user tasks and virtual ma-
chines to directly send and receive interrupts without invoking the
kernel or hypervisor.

Side-channel attacks exploit information channels that carry
information derived from a secret value. In particular, timing side-
channel attacks [40] gained a significant amount of attention as
they can easily be mounted by an adversary controlling a piece
of software on a victim system [63], or even remotely [4]. Besides
caches as a popular attack target [25, 60, 104], also other microar-
chitectural components have been attacked [1, 16, 17, 20, 64]. Sev-
eral works studied information leakage from interrupt timings, as
they carry information about user input, e.g., mouse movements or
keystroke presses on the keyboard, which typically trigger inter-
rupts [13, 67, 80, 106]. If an attacker can accurately detect interrupts,
they can infer the inter-keystroke timings, and consequently the
written text, in a side-channel attack [81, 105]. Recent works also
demonstrated these attacks from JavaScript [46]. Another common
attack scenario using the interrupt channel is website- or video-
fingerprinting. Cook et al. [13] used interrupt detection with a hot
loop to mount a website fingerprinting attack. Zhang et al. [106]
and Rauscher et al. [67] exploited interrupt detection to fingerprint

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690242
https://doi.org/10.1145/3658644.3690242

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Fabian Rauscher and Daniel Gruss

websites and videos. These previous works on interrupt side chan-
nels achieved high 𝐹1 scores in fingerprinting scenarios. However,
they require physical placement of the attacker on the specific phys-
ical core that receives the interrupts. Hence, if the attacker cannot
run on the core receiving the interrupts, these attacks are thwarted.

Therefore, we ask the following questions:
How can an attacker observe interrupts received by other cores? Do
the unprivileged user interrupts and the IPI virtualization features
facilitate new interrupt side-channel attacks?

In this paper, we present the IPI side channel, the first cross-core
cross-VM interrupt side channel: Our attack observes all interrupts
irrespective of the interrupt target cores, i.e., the victim can run
on any other core, in a different process or virtual machine. We
exploit the recently introduced user interrupts and IPI virtualization
features on Intel Sapphire Rapids and the upcoming Intel Arrow
Lake processors. User interrupts allow an attacker to send inter-
processor interrupts (IPIs) to the attacker’s own threads without
any privileges and measure their delivery time. IPI virtualization
allows an attacker to send IPIs inside of virtual machines without
hypervisor intervention allowing for precise IPI timemeasurements.
Our IPI side channel exploits that even when IPIs do not go to
the attacker’s own core, they run through a cross-core system
bus [30]. Consequently, any activity on the system bus leads to
timing variations on the attacker’s local IPIs.

We evaluate the IPI side channel in multiple case studies and com-
pare it with other state-of-the-art side channels: First, we present a
cross-core covert channel between two unprivileged user processes
using user interrupts and a cross-core covert channel between two
virtual machines using virtualized IPIs. We achieve a true capacity
of 434.7 kbit/s (𝑛=100, 𝜎𝑥=0.03) in a native scenario and 3.45 kbit/s
(𝑛=100, 𝜎𝑥=0.03) in a cross-VM scenario. Second, we demonstrate
an inter-keystroke timing attack using user interrupts with an 𝐹1
score of 97.9%. Third, we present a website fingerprinting side-
channel attack on the top 100 websites. We evaluate our attack
both in a closed-world native fingerprinting scenario, achieving
an 𝐹1 score of 91.7%, and in an open-world native fingerprinting
scenario with an additional class for other websites, achieving an
𝐹1 score of 89.0%. Furthermore, we demonstrate our website fin-
gerprinting attack in a cross-VM attack achieving an 𝐹1 scores of
80.4% (closed-world) and 71.0% (open-world).

Our IPI side channel is a significant improvement over prior
interrupt side-channel attacks: Prior IPI side channels either relied
on a software interface that is easy to constrain and already con-
strained on many systems [19], or on same-physical-core interrupt
detection techniques [13, 46, 67, 74]. Unrestricted cross-core and
cross-VM interrupt detection substantially shifts the threat model,
enabling attacks regardless of where attacker or victim are sched-
uled and which core receives the interrupts. We discuss this context
of our work as well as mitigations against interrupt side channels.

To summarize, we make the following contributions:

• We present the first cross-VM cross-core interrupt detection
side-channel attack, based on direct access to IPIs from user
space (user IPIs) and virtual machines (virtualized IPIs).

• We show that the IPI side channel can be used to leak up
to 434.7 kbit/s (𝑛=100, 𝜎𝑥=0.03) in a native cross-core covert
channel and 3.45 kbit/s (𝑛=100, 𝜎𝑥=0.03) cross-VM.

• We present a native inter-keystroke timing attack exploiting
the IPI side channel with an 𝐹1 score of 97.9%.

• We present website-fingerprinting attacks with 𝐹1 scores of
91.7% (closed-world) and 89.0% (open-world) with native
user IPIs, and 80.4% (closed-world) and 71.0% (open-world)
in a cross-VM scenario without attacker access to the core
receiving the victim interrupts.

Outline. Section 2 provides background on side channels and in-
terrupt detection. Section 3 explains user interrupts and IPI virtual-
ization and discusses the basic idea of the IPI side channel. Section 4
evaluates the IPI side channel using native and cross-VM cross-core
covert channel. Section 5 presents our inter-keystroke timing side-
channel attack. Section 6 presents our website fingerprinting attack
in a closed- and an open-world scenario. Section 7 presents our
systematic comparison of published interrupt side-channel attacks
and mitigations and discusses related work. Section 8 concludes.

Responsible Disclosure. We responsibly disclosed our findings to
Intel (February 21, 2024) and shared a paper draft with them. Intel
recommends software authors follow Intel’s software guidance on
side-channel resistance.

2 Background
In this section, we provide background on side-channel attacks,
interrupt detection, and website fingerprinting attacks as a typical
side-channel evaluation scenario.

2.1 Hardware-based Virtualization
Virtualization allows running a full system (kernel and userspace
programs) inside a virtual environment. A hypervisor monitors
and manages these virtual machines (VMs) and mediates access to
the hardware. Initial virtualization technology was based on full
system emulation and later para-virtualization [95]. To reduce the
performance overheads of these purely software-based solutions,
hardware vendors introduced instruction set extensions to drasti-
cally improve the performance of virtualization. Intel introduced
their Virtualization Technology extension (VT-x) [89], featuring
a new CPU execution mode allowing a hypervisor to run at a
higher privilege level than the operating system (i.e., VMX root
operation) [33]. The hypervisor controls a VM control structure
to configure the VM. Accessing hardware resources or interacting
with the hypervisor is done through interrupts or vmcall, which
trigger VM exit operations, handing over control to the hypervisor.
However, context switches from and to a VM are expensive [44] as
they require configuring the VM control structures and often the
flushing of buffers and even caches [98]. Consequently, to optimize
the performance of systems running VMs, it is crucial to avoid ex-
pensive context switch mechanisms [44]. Following this intuition,
Intel also introduced more hardware extensions to facilitate the
reduction of context switches. A recent addition in this direction is
IPI virtualization [31], introduced with Intel Xeon Sapphire Rapids
and Arrow Lake CPUs. IPI virtualization allows VMs to directly
send IPIs without the expensive switch to the hypervisor [31].

Cross-Core Interrupt Detection using Unprivileged and Virtualized IPIs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2.2 Side-Channel Attacks
Instead of exploiting software vulnerabilities, side channels ex-
ploit side effects of the implementation such as timing [40], power
consumption [41], or radiation [66]. Many works focus on cryp-
tographic primitives [4, 6, 40], leaking keys of vulnerable cryp-
tographic implementations of e.g., AES [4, 60], RSA [6, 104], or
ECDSA [103]. More recent works also focus on leakage on the
system level, e.g., kernel information [29], user input [23, 57, 69],
and other system activity [21]. Several works attempt to automate
side-channel attacks, especially software-based side-channel at-
tacks [7, 18, 23, 68, 78]. Among software-based side channels, espe-
cially cache side channels have taken a central role in the system
security research community with generic techniques like Flush+
Reload [104], Prime+Probe [50, 54, 60], and Flush+Flush [22]. Ob-
serving inter-keystroke timings is an interesting target for side-
channel attacks, as it bypasses the security guarantees of any cryp-
tographic algorithm applied by targeting the user’s password in-
stead [57]. Attacks on keystrokes are also difficult to mitigate as
they run through an extensive code path: The software starts han-
dling an interrupt in low-level kernel interrupt handler code and
goes through kernel processing, library processing, and application
processing until the keystroke shows a visual response to the user or
is transmitted to the target buffer [74]. Inter-keystroke timings con-
tain so much information that an attacker cannot only infer typed
text [57] but also obtain privacy-related information, e.g., identify
specific users [57]. Many works use machine learning to derive the
secret input from the inter-keystroke timing trace [80, 81, 105].

In a more controlled setting, covert channels are a standard
means to evaluate a side channel. In practice, covert channels can
be relevant to exfiltrate secrets from co-located VMs [53, 55, 84, 101].
Covert channels are suitable to estimate the amount of noise and
accuracy of a channel, and consequently, to provide a practical
upper bounds for the leakage rate of the side channel [55]. Covert
channels exploiting SMT, i.e., two workloads share a physical core,
and covert channels exploiting the cache, often reach the range of
multiple megabytes per second [22, 70]. However, covert channels
on other microarchitectural elements are often in the range of a
few bytes per second [16, 101].

2.3 Interrupt Detection
Interrupts are commonly categorized into interrupts, faults, and
traps [33]: Traps are intentionally configured to interrupt a process
when a certain condition is reached. This can, for instance, be a
certain memory access or reaching a specific location in the code.
Faults occur when the processor cannot handle an issue in the
instruction stream, handing over control to the operating system
to decide what to do. Examples for faults are page faults, general
protection faults, or a division by zero. Interrupts occur upon events
that are not part of the implemented instruction stream of the pro-
gram. For instance, keystrokes can occur at any time and need to
interrupt the running workload. The same also holds for other exter-
nal interrupt sources, including network interrupts, disk interrupts,
or interrupts caused by other input devices, e.g., the mouse. Conse-
quently, prior work showed that observing interrupts, inherently
allows to spy on these events [15, 46, 80] or even learn about the
interrupted instruction stream [92]. Hence, observing interrupts

and mitigating their observability has been identified as a direct
path to inter-keystroke attacks and their mitigation [74].

Schwarz et al. [74] exploited that jumps in the timestamps re-
turned by the rdtsc instruction indicate whether an interrupt oc-
curred. Lipp et al. [46] demonstrated a similar attack using a JavaScript-
based counting thread. Zhang et al. [106] and Rauscher et al. [67]
exploited the umwait and tpause instructions to detect interrupts.
They evaluated their attacks inwebsite fingerprinting attacks, video-
fingerprinting attacks, inter-keystroke detection, and covert chan-
nels to measure the side-channel capacity.

2.4 Website Fingerprinting
Website fingerprinting is a common side-channel evaluation sce-
nario, i.e., it serves as a benchmark to compare performance side
channels. Consequently, there is a broad range of different side
channels that perform website fingerprinting attacks, reporting
various accuracies: Spreitzer et al. [82] achieved an accuracy of
89% on 100 websites using the data-usage statistics on Android.
Jana et al. [37] exploited the memory usage statistics of browsers
and reported an accuracy between 30% and 50% for the top 100 000
websites. Gulmezoglu et al. [26] used hardware performance events
and achieved accuracy of 86.3% on 40 websites. Qin and Yue [65]
used the power side channel on Android to fingerprint websites,
achieving an accuracy of 55%. Shusterman et al. [79] reported a
website fingerprinting accuracy between 45.4% (on the Tor browser)
and 91.4% (in the best case). Cook et al. [13] reported an accuracy
of up to 97.2% in an open-world website fingerprinting scenario
and up to 96.6% in a closed-world website fingerprinting scenario
with the top 100 websites, based on an interrupt timing side chan-
nel similar to that of Lipp et al. [46]. Zhang et al. [106] monitored
interrupts using idle states from native code and reported an 𝐹1
score of 70% over the Alexa top 100 websites. In a similar attack,
Rauscher et al. [67] achieved 𝐹1 scores of 85.2% and 93.1% in an
open- and closed-world evaluation over the Alexa top 100 websites.

3 IPI Side Channel
In this section, we present the attack primitive we use for cross-
core and cross-VM interrupt detection. We provide an overview
of user interrupts and how they can be triggered and received in
userspace by an unprivileged attacker. We then provide an overview
of IPI virtualization, allowing a VM to send inter-processor inter-
rupts (IPIs) without hypervisor intervention, allowing for precise
observation of their behavior and side effects. Lastly, we show the
potential timing leakage of these new interrupt features to build an
attack primitive. With these attack primitives, we can observe other
interrupts on the same CPU to leak information from co-located
workloads, such as network activity or keystrokes.

3.1 User Interrupts
User interrupts were introduced with the Intel Xeon Sapphire
Rapids CPUs. The user interrupts feature will also be available
on the upcoming Arrow Lake consumer CPUs. They allow the user
to send and receive user inter-processor interrupts (user IPIs) using
the senduipi instruction. Additionally, the system software can
post user interrupts and send user-interrupt notifications. User IPIs,
in particular, allow for fast inter-process communication.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Fabian Rauscher and Daniel Gruss

At the time of writing, user interrupts are not officially supported
by the Linux kernel. For our experiments, we use Linux with the
official Intel implementation for user interrupt support [35]. While
we use Intel’s official patch, the exact software support implementa-
tion does not affect our results, as the attacks proposed in this paper
rely mainly on the hardware implementation of user interrupts.

Both sending and receiving user IPIs is only possible in user
space. If a user IPI is sent while the receiver thread is in kernel space
or not running, the user IPI is buffered until the receiver thread is
scheduled in user space. To allow for fast delivery when the receiver
thread is running, the operating system reserves an interrupt vector
in the advanced programmable interrupt controller (APIC) for user
interrupts called the user-interrupt notification vector (UINV). The
senduipi instruction sends an IPI with vector UINV to the core the
receiver thread is running on. When the APIC receives an interrupt
with the vector UINV, the CPU automatically performs checks for
outstanding user interrupts instead of performing normal interrupt
handling through the interrupt descriptor table (IDT). If the current
thread has outstanding user interrupts, a user interrupt is triggered
if the thread is in user space or set to pending if it is in the kernel.
The CPU also checks for pending user interrupts when a thread
state is restored, e.g., on a context switch.

While sending and receiving user IPIs can be done entirely in
user space, user interrupts require support from the kernel. Among
other things, the kernel manages the target cores for user interrupts,
stores the handler address for the interrupts, determines which
user interrupts are currently active, and which threads can receive
which user interrupts. Specifically, in the setup process of user
interrupts, support by the kernel is required. Intel proposes syscalls
for registering and unregistering an interrupt handler as well as
interrupt vectors for the receiver. Registering an interrupt vector
as a receiver returns a file descriptor. Another thread can use this
file descriptor to register as a sender for a given interrupt vector
[35]. After the initial setup, the sender can trigger user IPIs with
the senduipi instruction. Consequently, it is only possible for a
thread to send user IPIs to threads that opt-in to receive them and
only if the receiver shares the file descriptor with them.

The delivery delay of user IPIs and POSIX signals is shown in
Figure 1. We measure the delay by executing rdtsc right before
sending the POSIX signal or user IPI and as the first instruction
in the handler function. The difference between the two TSC val-
ues is the minimum time between the signal or IPI being sent and
the handler being executed from the user’s perspective. User IPIs
perform better by a factor of 4 with a delay of only 1256.4 cycles
(𝑛=106, 𝜎𝑥=0.05) compared to POSIX signals at 5179.6 cycles (𝑛=106,
𝜎𝑥=0.29). When the sender and receiver are the same thread, user
IPIs perform better by a factor of 3 with a delay of only 726.8 cy-
cles (𝑛=106, 𝜎𝑥=0.06) compared to POSIX signals at 2398.0 cycles
(𝑛=106, 𝜎𝑥=0.07). POSIX signals have a significant kernel overhead,
as sending a signal involves a syscall, which then delivers the signal,
possibly by sending a regular IPI or setting it pending, waiting for
the receiver to detect it. User IPIs have no significant kernel over-
head, resulting in fast delivery times. These results show that user
IPIs are a valuable addition for fast inter-process communication.

3.2 IPI Virtualization
IPI virtualization was introduced with the Intel Xeon Sapphire
Rapids CPUs and Intel Arrow Lake CPUs. Furthermore, IPI virtual-
ization will be available on Arrow Lake CPUs, the next generation
of consumer Intel CPUs. This feature allows a VM to post IPIs with-
out generating a VM exit. Contrary to user IPIs, IPI virtualization
is already part of the Linux kernel and is activated per default (if
available) with KVM since Linux 6.0 [38].

While it was already possible for the host to send so-called vir-
tual interrupts to running VMs on a different core using the process
posted interrupts feature and for the guest to receive them through
virtual interrupt delivery without a VM exit, a VM couldn’t send
IPIs without causing a VM exit. Similar to user IPIs, posted-interrupt
processing uses an interrupt vector that the operating system can
designate for virtual interrupts. When a core running a VM receives
such an interrupt, the core will check for any open posted inter-
rupts and trigger them immediately, if possible. Previously, when
sending IPIs, writes to the corresponding advanced programmable
interrupt controller (APIC) field would cause a VM exit. With IPI
virtualization, these writes are virtualized and post interrupts di-
rectly, using the posted-interrupt processing mechanism. Thus, the
guest can send IPIs between cores without VM exits while sender
and receiver are running, reducing the overhead of IPIs in VMs sig-
nificantly. According to an Intel engineer, this reduces the delivery
time of IPIs inside of VMs by up to 22.21% [24]. As operating sys-
tems regularly use IPIs for functionalities such as TLB shootdowns,
faster IPI processing can have a significant performance impact on
inter-processor communication. Furthermore, this feature allows
VMs to also take full advantage of user IPIs, as user IPIs can use IPI
virtualization to not cause VM exits.

3.3 Timing Behaviour
In this section, we discuss the timing behavior of user IPIs and IPIs
sent through IPI virtualization.

3.3.1 User IPIs. To determine the impact of other interrupts on
the delivery time of user IPIs, we ran a measurement thread that
continuously sends user IPIs to itself and measures the time be-
tween the senduipi instruction and the interrupt service routine
using rdtsc. An example of the measurement code is shown in
Listing 1. We trigger different interrupt types to arrive on other
cores. Figure 2 shows the result of these measurements. To provide
a better overview, we filtered all measurements in the typical user
IPI delivery range from the core to itself (< 900 cycles). We grouped
the remaining interrupts into 10 million cycle large bins. Figure 2
shows howmany unusually slow user IPIs were measured at a given
time. We refer to this trace as an interrupt trace. We performed these
measurements with a download in the background and the network
interrupts arriving on a different core (Figure 2a), with a different
thread sending user IPIs to another thread (Figure 2b), and a differ-
ent thread sending regular IPIs (TLB shootdowns) to another thread
(Figure 2c). In Figure 2a, the download starts at ≈ 10 billion cycles,
resulting in a slight increase in unusually slow interrupts. The
download ends at ≈ 20 billion cycles, resulting in a slight increase
in unusually slow interrupts. In Figure 2b, the user IPIs start at ≈ 16
billion cycles, with a drastic increase in unusually slow interrupts.
This increase is significantly higher than for network interrupts, as

Cross-Core Interrupt Detection using Unprivileged and Virtualized IPIs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000
100
102
104
106

Latency [CPU cycles]

N
o.
of

ca
se
s user IPI self user IPI POSIX signal self POSIX signal

Figure 1: User IPI and POSIX signal delivery time in cycles. User IPIs are 4 times faster (3 in case of a self-interrupt).

1 volatile size_t end;
2

3 void __attribute__ ((interrupt))
4 handler(struct __uintr_frame *,
-> unsigned long) {

5 end = rdtsc();
6 }
7 void attack () {
8 int ret =
-> uintr_register_handler(handler , 0);

9 int uintr_fd = uintr_create_fd (1, 0);
10 stui();
11 int uipi_handle =

-> uintr_register_sender(uintr_fd , 0);
12

13 for (;;) {
14 end = 0;
15 size_t start = rdtsc();
16 senduipi(uipi_handle);
17 while (!end);
18 auto x = end -start;
19 if (x < 900) continue;
20 //<interrupt detected >
21 //<further processing >
22 }
23 }

Listing 1: User-interrupt side-channel measurement code.

the user IPIs are sent at a significantly higher frequency than the
typical arrival rate of network packets. The interrupt trace reaches
almost 0 at ≈ 25 billion cycles when the user IPIs stop. In Figure 2c,
the regular IPIs start at ≈ 20 billion cycles, resulting in a drastic
increase in unusually slow interrupts. The interrupt trace reaches
almost 0 at ≈ 45 billion cycles when the IPIs stop.

3.3.2 IPI virtualization. To determine the impact of other inter-
rupts on the delivery time of IPIs inside VMs, we ran a measurement
thread that continuously sends IPIs to itself inside of a VM (virtu-
alized IPIs) and measures the time between the interrupt sent and
the interrupt service routine using rdtsc. While the core sends
IPIs to itself, we do not use self-IPIs. Self-IPIs are a special kind of
IPI that allow a core to send an IPI to itself with low-performance
overhead. As self-IPIs are not targeting other cores, they do not
cause any contention on the shared system bus. Instead, we use

5 · 1
09

1 · 1
01
0

1.5
· 10

10

2 · 1
01
0

0

50

100

Cycle

Co
un

t
(a) Download

5 · 1
09

1 · 1
01
0

1.5
· 10

10

2 · 1
01
0

2.5
· 10

10

3 · 1
01
0

0

2,000

4,000

Cycle

Co
un

t

(b) User IPIs

1 · 1
01
0

2 · 1
01
0

3 · 1
01
0

4 · 1
01
0

5 · 1
01
0

0
200
400
600

Cycle

Co
un

t

(c) Regular IPIs

Figure 2: User IPI timings with different tasks generating
interrupts on other cores in the background.

regular IPIs, which allow for a target core to be specified, which
we set to the core that sends the IPI. This will trigger an IPI that
is sent out to the system bus and received by the core, making
it affected by possible contention. Such measurements on an idle
system are shown in Figure 3. An IPI from a core to itself takes
2148.1 (𝑛=15 ∗ 106, 𝜎𝑥=68.3) cycles.

Our measurement code consists of a kernel module that registers
a custom interrupt handler, repeatedly sends virtualized IPIs to it-
self, and measures the delivery time. We trigger different interrupt
types to arrive on other cores. Figure 4 shows the result of these

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Fabian Rauscher and Daniel Gruss

2,000 2,100 2,200 2,300 2,400 2,500
0

1

2

·106

Latency [CPU cycles]

N
o.
of

ca
se
s VM IPI

Figure 3: IPI timings of a core sending an IPI to itself.

0
5,0
00

10,
000

15,
000

0

0.5

1 ·104

Time [𝑚𝑠]

Co
un

t

(a) Download

0
2,0
00

4,0
00

6,0
00

8,0
00

10,
000

12,
000

14,
000

0
500

1,000
1,500
2,000

Time [𝑚𝑠]

Co
un

t

(b) IPIs

Figure 4: IPI timings with different tasks generating inter-
rupts on other cores inside of VMs in the background.

measurements. To provide a better overview, we filtered all mea-
surements in the typical IPI delivery range from the core to itself
(< 2200 cycles). We grouped the remaining interrupts into 10ms
large bins. Figure 4 shows how many unusually slow IPIs were mea-
sured at a given time. We performed these measurements with a
download in a separate VM, and the network interrupts arriving on
a different core (Figure 4a) and a different thread in a VM sending
regular IPIs (TLB shootdowns) to another thread (Figure 4b). In
Figure 2a, the download starts at 4 000ms, drastically increasing
the number of unusually slow interrupts. The download ends at
16 000ms, resulting in a slight increase in unusually slow interrupts.
In Figure 4b, the IPIs start at 5 000ms, increasing the number of
unusually slow interrupts. The interrupt trace goes back to almost
0 at 13 000ms when the IPIs stop. The external interrupts from
downloads, such as shown in Figure 4a, seem to have a significantly
higher impact on the IPI latency than IPIs shown in Figure 4b.

3.3.3 Conclusion. These measurements show that it is possible to
detect external interrupts and other IPIs, originating and targeting
cores independent of the attacker. We assume this timing behav-
ior results from contention on a shared bus used for delivering

700 800 900 1,000 1,100 1,200 1,300
100
102
104
106

Latency [CPU cycles]

N
o.
of

ca
se
s ‘1’ ‘0’

Figure 5: Difference between a ‘1’ and a ‘0’ for our user IPI
covert channel.

interrupts. According to the Intel manual, this shared bus is the
system bus on Xeon CPUs [32]. Despite this, we cannot detect other
events that should result in an access to the system bus, such as
cache coherency-related events between cores. Furthermore, we
cannot detect other system activity, such as a high amount of cache
evictions on other cores or from the shared L3 using the IPI side
channel. This is not surprising, as cache evictions from other cores
or the L3 should not significantly affect the attacker core due to
the non-inclusive L3 of the Xeon CPU used. Therefore, even if the
cache lines of the attacker are evicted from the L3 by other cores,
they stay in the private L1 and L2 of the attacker’s core. The IPI
side-channel signal also disappears when replacing the IPI measure-
ment code with a cache attacker or constant time code, or turning
off IPI virtualization in case of the cross-VM attack. This further
validates that the signal stems from the IPI delivery delay.

4 Covert Channel
In this section, we present a cross-core and a cross-VM covert
channel based on the IPI side channel. The covert channel is based
on the performance impact other interrupts on the system have
on user IPIs and virtualized IPIs. Covert channels are the most
commonly used scenario to evaluate new side channels [85].

4.1 Covert Channel Design
In this section, we provide a high-level overview of our user-interrupt
covert channel. We use time-slicing in combination with the IPI
side channel shown in Section 3.3 to transmit data.

We transmit data by either performing user IPIs (native) or vir-
tualized IPIs (cross-VM) in the sender or by busy waiting and mea-
suring the time IPIs take in the receiver. When a ‘1’-bit is sent, the
sender sends IPIs to itself, and when a ‘0’-bit is sent, the sender busy
waits. The receiver sends IPIs to itself and measures the timings.

The timings for the ‘1’ and ‘0’ cases for user IPIs are provided
in Figure 5. A ‘1’-bit results in measured user IPI timings of 785.4
cycles (𝑛=8 · 109, 𝜎𝑥=0.023) and a ‘0’-bit results in 735.7 cycles
(𝑛=8 · 109, 𝜎𝑥=0.003) making them clearly distinguishable. Despite
this clear difference in the average IPI time, both cases significantly
overlap, as shown in Figure 5. This overlap results in a noisy but
still functional covert channel.

The timings for the cross-VM covert channel in a sample trans-
mission are shown in Figure 6. A ‘1’-bit results in frequent spikes
in the transmission time, while there are no spikes when a ‘0’-bit

Cross-Core Interrupt Detection using Unprivileged and Virtualized IPIs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0 1 2 3 4

·10
6

2,000

2,200

2,400

0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1

relative TSC [cycles]

IP
IT

im
e
[c
yc
le
s]

Figure 6: Example transmission of our cross-VM covert chan-
nel using virtualized IPIs.

Figure 7: Overview over a short sample transmission using
user IPIs. When a ‘1’ is sent, the sender runs self-user IPIs,
slowing down the receiver’s user IPIs. When a ‘0’ is sent, the
sender busy waits, which does not affect the receiver’s user
IPIs.

is transmitted. The base latency of IPIs inside of VMs changes fre-
quently, as shown in Figure 6, where the base latency is at ≈2 100
cycles for the first half of this example and at ≈2 250 cycles for
the second half. This frequent change in the base latency is most
likely due to other system events. A higher base latency also lessens
the effect other IPIs have on the receiver’s IPI latency. While the
frequently changing base latency does make it more challenging to
extract the sent bits, they are still distinguishable.

To synchronize the covert channel, we use the processor’s time
stamp counter (TSC) with the rdtsc instruction. The transmission
for the native covert channel starts at a fixed TSC value or TSC
modulo overflow. This reliably synchronizes sender and receiver.
There is no direct communication between the sender and receiver.
In the cross-VM covert channel, the initial synchronization occurs
through the sender transmitting an initialization sequence, as the
two VMs do not share the same TSC. Despite this, the TSC still
increments at the same rate, allowing us to use it for further syn-
chronization after establishing the beginning of the transmission.

The transmission itself is divided into fixed-sized transmission
windows. Within each transmission window, one bit is sent. To
send a bit, the sender either sends IPIs to itself throughout the
transmission window or busy waits. The receiver continuously
sends the IPIs to itself. After the transmission window is finished,
the receiver determines the bit received using the timings of all its
IPIs within this window.

0.2

0.3

0.4

0.5

Bi
tE

rr
or

Ra
tio

0.5 1 1.5 2 2.5

·106

0

2

4
·105

Raw Capacity [Mbps]

Tr
ue

Ca
pa
ci
ty

[M
bp

s]

Bit Error Rate
True Capacity

Figure 8: The raw capacity and corresponding bit error ratio
of our covert channel, as well as the resulting true capacity.
The optimal true capacity is reached at a raw capacity of
1 726.6kbit/s and a bit error ratio of 25.3% (𝑛=100, 𝜎𝑥=1.4).

Figure 7 provides an overview of a typical transmission. In the
first transmission window, the sender continuously sends IPIs to
itself, slowing the IPIs of the receiver down to transmit a ‘1’. In the
second window, the sender busy waits, not affecting the receiver, to
transmit a ‘0’. Finally, in the third window, the sender, again, sends
IPIs to itself, slowing the IPIs of the receiver down to transmit a ‘1’.
This results in the transmission of the bit sequence ‘101’.

4.2 Evaluation
We evaluate our covert channel using random data on an Intel
Xeon Silver 4410T. We tested two scenarios, native using user IPIs
and cross-VM using virtualized IPIs. The sender and receiver run
in separate processes, or VMs in the case of cross-VM, and are
scheduled on two separate physical cores. Furthermore, we assume
that there is no legitimate communication channel between them.

To determine the optimal transmission speed, we evaluate the
covert channel for different transmission window lengths and
record the raw capacity and bit error ratio. As our channel is based
on time slices, decreasing the transmission window length increases
the raw capacity. With a decrease in window length, the bit error
ratio may increase, as there is less time for the receiver to determine
the sent bit correctly. This decreases the true-channel capacity if the
window length is too short due to the higher bit error ratio. To de-
termine the optimal window length, we compute the true capacity
of our channel using the binary symmetric channel model.1

Native. We take the average for the true capacity and the bit
error ratio over 100 runs for each transmission window length.
The results of our optimization are shown in Figure 8. The user-
interrupt covert channel is noisy due to the low attack margin
(see Figure 5). Furthermore, our covert channel is affected by all
external interrupts and IPIs on the same CPU, resulting in a high bit
error ratio. The optimal transmission speed of 434.7 kbit/s (𝑛=100,
𝜎𝑥=0.03) is reached at a raw capacity of 1 726.6 kbit/s and a bit error
ratio of 25.3% (𝑛=100, 𝜎𝑥=1.4). With a raw capacity higher than
1 726.6 kbit/s, the bit error ratio increases significantly, leading to a
lower true capacity.

1We compute the true channel capacity𝑇 as𝑇 = 𝐶 · (1 + ((1 − 𝑝) · log2 (1 − 𝑝) +
𝑝 · log2 (𝑝))) where𝐶 is the raw bit-rate and 𝑝 the bit-error probability.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Fabian Rauscher and Daniel Gruss

10
2

10
3

10
4

10
5

10
6

10
70

200

400

NVMe SSD

Interrupts per Second (I/s)

Ca
pa
ci
ty

[k
bi
t/s

]

Figure 9: The channel capacity of our native covert channel
with an increasing amount of interrupt noise using IPIs. The
capacity is unaffected until a interrupts noise of ≈600kI/s
interrupts per second and drops to ≈0 bit/s at ≈10MI/s. As a
reference point, the NVMe SSD that is part of our test system
can generate up to ≈50kI/s.

Cross-VM. We optimized the cross-VM covert channel by hand
due to the additional challenge of the initial synchronization of
sender and receiver and the constantly changing base IPI latency
in a VM scenario. This covert channel is affected by all external
interrupts and IPIs on the same CPU, as well as further noise from
the VMs, resulting in a high bit error ratio. Our cross-VM covert
channel has a true capacity of 3.45 kbit/s (𝑛=100, 𝜎𝑥=0.01) and a bit
error ratio of 18.9% (𝑛=100, 𝜎𝑥=0,01). This lower capacity compared
to the native scenario is the result of further noise introduced by
the VM scenario, as well as the constantly changing base IPI latency,
which makes bit extraction more challenging.

Noise Resilience. To determine the noise resilience of the IPI side
channel, we ran our native covert channel with a variety of stressors.
We ran the stressors and the attack on separate cores to rule out
a drop in capacity due to the attacker not being scheduled, as we
want to focus on the noise directly generated by the stressors. We
used the stress-ng CPU benchmark to generate compute-intense
noise and the stress-ng I/O benchmark to generate noise through
constant disk accesses and, therefore, NVMe SSD interrupts. As
expected, the CPU benchmark does not negatively influence the
channel capacity when all cores run the stress-ng CPU stressor
except for the sender and receiver cores. The stress-ng I/O stressor
also does not influence the channel capacity. While the stress-ng I/O
benchmark does constantly generate disk accesses, even in this high
I/O scenario, our NVMe SSD only generates ≈50k interrupts per
second (I/s), which is significantly lower than the covert channel’s
≈2MI/s. The interrupt stress generated by the NVMe SSD is too
low to impact the attack significantly.

To determine the interrupt frequency required to affect the chan-
nel capacity, we ran additional measurements using a custom in-
terrupt stressor that generates IPIs on other cores at various fre-
quencies. The results of these measurements are shown in Figure 9.
The channel capacity starts to be affected by the other interrupts
at ≈600 kI/s, dropping from 434.7 kbit/s to 391.9 kbit/s, slowly de-
creasing with more interrupt noise. The channel reaches a capacity
of ≈0 bit/s at ≈10MI/s. Our NVMe SSD was only able to generate
≈50 kI/s in our tests, which is significantly lower than the ≈600 kI/s
required to measurably affect the channel.

PreviousWork. Saileshwar et al. [70] exploit contention on shared
hardware resources on the CPU and achieve a cross-core capacity
of 14.4Mbit/s using shared addresses. Gruss et al. [22] time the
clflush instruction to detect if a cache line is present in shared
memory and achieve a cross-core capacity of 3.4Mbit/s. Liu et al.
[50] use Prime+Probe on the L3 with a capacity of 600 kbit/s, only
slightly faster than our attack.While some of these attacks are faster,
they require either information about physical memory, addressing
functions, or shared memory with the main goal of observing cache
accesses. Our attacks require access to IPIs with the main goal
of observing the delivery of other IPIs and interrupts. The most
closely related covert channel is by Rauscher et al. [67], using the
new tpause instruction to detect interrupts and other events on
the same physical core, achieving a true capacity of 656 kbit/s with
an error rate of 9.2%. While our attack is slightly slower with
434.7 kbit/s, we can detect interrupts from other physical cores.

5 Keystroke Detection
In this section, we present our inter-keystroke timing attack using
user interrupts. Contrary to previous interrupt detection-based
attacks, our attacker is not required to run on the physical core that
receives the victim’s keyboard interrupts. Instead, we measure the
IPI delivery time of IPIs from the attacker core to itself to detect
them. We do not directly infer text from these measurements but
instead use them to determine the channel quality by comparing
our measurements with the keystroke-timing ground truth. Few
works recover text from timings, e.g., Song et al. [81], as this has
become a standard but training-intense machine learning task.

5.1 Threat Model and Attack Setup
We run our measurements on an Intel Xeon Silver 4410T CPU
with Ubuntu 22.04 and the Linux 6.0 kernel published by Intel [35]
that supports user interrupts. We assume that the attacker can
run unprivileged code on the victim system and has access to a
high-precision timer, e.g., rdtsc. The attacker may be running
on an isolated core that does not receive or handle any hardware
interrupts. Finally, we assume that a user is providing input to the
system via keystrokes while the attacker program is running.

5.2 Attack Evaluation
For our inter-keystroke timing attack, the attacker continuously
sends user IPIs to itself. By monitoring the time until the user
IPI is handled, we can observe whether other system events, e.g.,
keyboard interrupts.

As the raw user IPI timings can be noisy, we apply a moving
minimum filter, which returns the minimal timing observed in a
400 sample window. Figure 10 shows a trace of the filtered user
IPI timings while a user is typing on the system. We can observe a
distinctive pattern with 3 upward ticks in the user IPI delay. Based
on this pattern, we can detect keystrokes using a similarity measure
with a sliding window over a trace, e.g., with a window size of 200
million cycles.

We evaluated our attack with a human typing on the keyboard
into a program measuring the ground truth. Based on this ground
truth, we computed the false negative and false positive rate, as
well as the temporal deviation from the ground truth. Overall, we

Cross-Core Interrupt Detection using Unprivileged and Virtualized IPIs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Keystroke Detection Rates and 𝐹1 Scores reported in other works.

Paper Co-location Detection Rate 𝐹1 Score Temporal Standard Deviation
our work cross-core 98.2% 97.9% 6.15ms

Schwarz et al. [74] same core 100% 94% ≈1ms
Rauscher et al. [67] same core 94.1% 90.5% 0.95ms

Lipp et al. [46] same core 81.75% n/a n/a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·10
9

650
700
750
800
850

relative TSC [cycles]

us
er

IP
IT

im
e

[c
yc
le
s]

Figure 10: Keystroke detection using user IPIs. For visual-
ization purposes, we filtered the noise by only plotting the
minimum delay of 400 measurements each. At every key-
stroke, indicated by red arrows, there are 3 distinct upward
ticks in the user IPI delays, making them distinguishable
from background noise.

have a ground-truth trace with 571 keystrokes. The trace recorded
with our IPI side channel contains 575 keystrokes. However, 14 of
these keystrokes were false positives, meaning that we also had
10 false negative keystrokes, i.e., only 561 true positive keystroke
detections. Consequently, we have a precision of 97.6% and a recall
of 98.2%. Based on this, we compute an 𝐹1 score of 97.9%. This is
slightly higher than the 𝐹1 scores and identification rates reported
in other works, as shown in Table 1.

On the temporal scale, we observe a slightly higher standard
deviation of 6.15ms, which is expected as our attack is a cross-core
attack in contrast to the other same-core attacks. Still, our temporal
standard deviation is significantly lower than the average inter-
keystroke interval of 120ms and standard deviation of 11ms for
fast typists [14] and in the same order of magnitude as same-core
inter-keystroke timing attacks.

6 Website Fingerprinting
In this section, we present a website fingerprinting attack using
user interrupts and virtualized IPIs. We show a cross-core native
website fingerprinting attack in both a closed-world and open-
world scenario on the top 100 websites from the Alexa top 1 million
list [2] using user IPIs to detect network interrupts. For open-world
website fingerprinting, we use a separate other class for all websites
not in the top 100. Furthermore, we present a cross-core cross-VM
website fingerprinting attack in both a closed-world and open-
world scenario on the top 100 websites from the Alexa top 1 million
list [2] using virtualized IPIs to detect network interrupts. Contrary
to previous interrupt detection-based fingerprinting attacks, our

attacker is not required to run on the physical core that receives
the victim browser’s network interrupts.

6.1 Threat Model and Attack Setup
In this section, we discuss the thread model and overall setup of
our attack.

Native. We run our measurements on an Intel Xeon Silver 4410T
CPU with a default-configured Google Chrome 121.0. We assume
that the attacker can run code on the victim system and has access
to a high-precision timer, e.g., rdtsc. While the attacker code is
running, the victim browses the web. We make no assumptions on
whether the attacker is able to run on the core that receives the
network interrupts, as the interrupts could be rerouted to a separate
isolated core as proposed to mitigate interrupt detection attacks
by previous works [67]. The attacker is not able to monitor inter-
rupts through any system interfaces such as /proc/interrupts.
Furthermore, we do not make any assumptions about the core the
web browser is running on.

Virtual Machine Attack Scenario. We assume a thin client sce-
nario, where attacker and victim run co-located on the same VM
host. Thin client devices have limited computing capability and
only access a VM containing a full desktop environment. Thin
clients offer companies lower initial hardware and maintenance
costs compared to traditional desktops and are offered by major
cloud providers [39]. While the attacker code is running, the victim
browses the web.

We run our measurements on an Intel Xeon Silver 4410T CPU
with default-configured Google Chrome 121.0. For the hypervisor
we use KVM with disk caching disabled, as recommended by Red
Hat [27], on a stock Ubuntu 22.04. No custom kernel is required
for this attack, as IPI virtualization is part of the Linux kernel and
enabled by default. We assume that the attacker and victim run
inside separate VMs in the cloud and are co-located on the same
CPU, but both are running on separate physical cores. We assume
that the attacker has root access inside its own VM and can load
kernel modules, allowing for precise measurements of IPI timings.
We make no assumptions on whether the attacker is able to run
on the core that receives the network interrupts, as the interrupts
could be rerouted to a separate isolated core, as proposed to mitigate
interrupt detection attacks by previous works [67], or on a core the
attacker does not run on.

6.2 Attack
Our attack consists of a data-collection phase and an offline phase
for processing and classification of collected traces. The collection

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Fabian Rauscher and Daniel Gruss

5 · 1
09

1 · 1
01
0

1.5
· 10

10

2 · 1
01
0

2.5
· 10

10
0

100
200

Cycle

D
et
ec
te
d

In
te
rr
up

ts

(a) google.com

5 · 1
09

1 · 1
01
0

1.5
· 10

10

2 · 1
01
0

2.5
· 10

10
0

200
400
600

Cycle

D
et
ec
te
d

In
te
rr
up

ts

(b) youtube.com

Figure 11: Interrupt traces of google.com (Figure 11a) and
youtube.com (Figure 11b) measured by the attacker with user
IPIs.

5 · 1
09

1 · 1
01
0

1.5
· 10

10

2 · 1
01
0

2.5
· 10

10
0
50
100

Cycle

D
et
ec
te
d

In
te
rr
up

ts

(a) google.com

5 · 1
09

1 · 1
01
0

1.5
· 10

10

2 · 1
01
0

2.5
· 10

10
0
50
100

Cycle

D
et
ec
te
d

In
te
rr
up

ts

(b) youtube.com

Figure 12: Cross-VM interrupt traces of google.com (Fig-
ure 11a) and youtube.com (Figure 11b) measured by the at-
tacker with virtualized IPIs.

phase consists of the attacker running on the victim system col-
lecting interrupt traces through either user IPIs, in the case of the
native scenario, or virtualized IPIs, in the case of the cross-VM
scenario. Such interrupt traces for google.com and youtube.com
using user IPIs are shown in Figure 11 and for the cross-VM scenario
using virtualized IPIs in Figure 12. The x-axis represents the CPU
cycle relative to the beginning of the trace, and the y-axis repre-
sents the number of interrupts detected through our measurements.

For the native user interrupts scenario (Figure 11) google.com
and youtube.com have distinct traces, with google.com having
a larger amount of interrupts at the beginning and multiple in-
terrupts regularly throughout the trace and youtube.com having
most interrupts occur at the start of the website access with one
exceptionally high spike at 10 million cycles. For the cross-VM sce-
nario (Figure 12) google.com and youtube.com also have distinct
traces, with google.com having a large number of interrupts for a
short period of time with distinct peaks, and youtube.com having
a similar amount of interrupts over a longer period. As seen in both
Figure 11 and Figure 12, there are more detections in our cross-VM
scenario from the additional noise introduced by the VMs.

In the offline phase, these traces are first preprocessed with a
short-time Fourier transform (STFT). The STFT performs multiple
Fourier transforms on short windows of the trace, resulting in
2D data consisting of the frequency information for each window
on one axis and the time on the other axis. The preprocessing
through an STFT allows us to perform convolutions on our data,
making it possible to use a convolutional neural network (CNN)
for the classification. This is a well-established signal processing
technique [11, 28, 67, 102]. Our CNN consists of 4 convolutional
layers and 3 fully connected layers and outputs a probability for
each website and one for the other class in the case of the open-
world scenarios. The output is the probability that the input belongs
to a given website.

6.3 Evaluation
We evaluate our attack on closed-world and open-world scenarios
with the attacker running on a physical core that does not receive
network interrupts or run the browser. We collected 200 traces for
each of the explicitly classified websites (20 000 in total). For the
open-world scenario, we additionally collected the traces of 5000
additional websites (one per website) from the Alexa top 1 million
list [2], which are not in the top 100. To evaluate our attack, we
randomly split our data for each class into 5 equally large parts and
performed 5-fold cross-validation. The test set for each run does
not overlap with the training set. Due to this, in the open-world
scenarios, website traces in the test set of the other class belong to
websites that the model has never seen during training. We train
our CNN with a validation split of 10% of the training set.

6.3.1 Native Closed-World Website Fingerprinting. In this scenario,
we only classify the top 100 websites in a native scenario using user
IPIs. Our classifier achieved an 𝐹1 score of 91.7%. The confusion ma-
trix is shown in Figure 13. Each cell represents the probability that
our classifier detects a trace from a website (y-axis) as a given label
(x-axis). The clear diagonal shows the high accuracy of our clas-
sifier. The worst-performing websites are google.com.hk at 42%,
google.co.in at 59%, and dzen.ru at 68%. All other websites have
accuracies of above 70%. The google.com.hk and google.co.in
sites, in particular, are often misclassified as other Google domains.

6.3.2 Native Open-World Website Fingerprinting. In this scenario,
we classify the top 100 websites and use an other class for all other
websites in a native scenario using user IPIs. Our classifier achieved
a macro averaged 𝐹1 score of 89.0%, showing a high accuracy across

Cross-Core Interrupt Detection using Unprivileged and Virtualized IPIs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90
100

Prediction

W
eb
sit
e

Figure 13: Native closed-world website fingerprinting confu-
sion matrix.

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90
100

Prediction

W
eb
sit
e

Figure 14: Native open-world website fingerprinting confu-
sion matrix.

all classes, and an accuracy of 85.2% on the other class. The con-
fusion matrix is shown in Figure 14. Each cell represents the proba-
bility that our classifier detects a trace from a website (y-axis) as a
given label (x-axis). The clear diagonal shows the high accuracy of
our classifier. The worst-performing websites are google.com.hk
at 41.5%, google.co.in at 54.5%, microsoftonline.com at 63%,
and dzen.ru at 67%. All other websites have accuracies above
70%. Similar to the closed-world scenario, the google.com.hk and
google.co.in websites, in particular, are often misclassified as
other Google domains. The microsoftonline.com domain per-
forms poorly relative to other websites, as only sub-domains of it
are accessible, e.g., login.microsoftonline.com, while we only
tested the exact domains listed in the Alexa top 1 million list [2].

6.3.3 Cross-VM Closed-World Website Fingerprinting. In this sce-
nario, we only classify the top 100 websites in a cross-VM scenario
using virtualized IPIs. Our classifier achieved an 𝐹1 score of 80.4%.
The confusion matrix is shown in Figure 15. Each cell represents the

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90
100

Prediction

W
eb
sit
e

Figure 15: Cross-VM closed-world website fingerprinting con-
fusion matrix.

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90
100

Prediction

W
eb
sit
e

Figure 16: Cross-VM open-world website fingerprinting con-
fusion matrix.

probability that our classifier detects a trace from a website (y-axis)
as a given label (x-axis). The clear diagonal shows the high accuracy
of our classifier. The worst-performing websites are indeed.com
at 18%, google.com.hk at 24%, and facebook.com at 29.5%. All
indeed.com and facebook.com, in particular, are fast-loading web-
sites when already cached, making themmore challenging to distin-
guish with the added noise from the VMs. The Google domains are,
similar to the other scenarios, often misclassified as other Google
domains.

6.3.4 Cross-VM Open-World Website Fingerprinting. In this sce-
nario, we only classify the top 100 websites in a cross-VM scenario
using virtualized IPIs. Our classifier achieved a macro averaged
𝐹1 score of 71.0%, showing a high accuracy across all classes, and
an accuracy of 71.7% on the other class. The confusion matrix is
shown in Figure 16. Each cell represents the probability that our
classifier detects a trace from a website (y-axis) as a given label

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Fabian Rauscher and Daniel Gruss

Table 2: Overview of Different Interrupt Side-ChannelWorks

Attack Software Hardware-Based
Interface Same-Core Cross-Core

Inter-Keystroke
Timing [74, 105] [46, 74, 87, 88] our work

Website
Fingerprinting [51] [13, 67, 106, 107] our work

Application
Fingerprinting [15, 51, 86]

Cryptographic
Key Leakage [107]

DNN Model
Stealing [51] [107]

Table 3: Mitigations for Interrupt Side-Channel Attacks

Approach Mitigations
Constrain interfaces [13, 105]
Constrain co-location [67]
Constrain timers [36, 45, 47, 48, 52, 61, 94, 106]

Non-leaking timers [3, 42, 52, 94]
Inject Noise [74]

(x-axis). The clear diagonal shows the high accuracy of our clas-
sifier. Similar to the closed-world scenario, the worst-performing
websites are indeed.com at 11%, google.com.hk at 13.5%, and
facebook.com at 13.5%. The Google domains are, similar to the
other scenarios, often misclassified as other Google domains.

6.4 Previous Work
Our closed-world attack achieves an 𝐹1 score of 91.7% (native)
and 80.4% (cross-VM), while our open-world attack achieves an 𝐹1
score of 89.0% (native) and 71.0% (cross-VM), performing similarly
to previous works while not requiring to run on the core where
the network interrupts arrive. Zhang et al. [106] achieved an 𝐹1
score of 78% on the top 100 sites using the mwaitx instruction to
detect interrupts on the core that receives the network interrupts.
Gulmezoglu et al. [26] exploit performance counters, achieving an
accuracy of 86.3% on 40 websites. Spreitzer et al. [82] use data-
usage statistics on Android to classify 100 websites with an 𝐹1 score
of 89%. Rauscher et al. [67] exploit the tpause instruction in VMs
to classify 100 websites with an 𝐹1 score of 93.1%.

7 Related Work & Discussion
A series of works have investigated side-channel attacks exploiting
interrupts or their effects. The information channels can coarsely
be divided into three categories (cf. Table 2):

The first category of attacks uses software interfaces to obtain
information about interrupts, e.g., /proc/interrupts [15, 51, 74,
86, 105]. While this system information is provided architecturally
without noise and regardless of the attacker’s core scheduling,
they are trivial to mitigate by making the corresponding software
interface privileged and these interfaces are generally not available

from within VMs for the host system. Prior work demonstrated
inter-keystroke timing [74, 105], website-fingerprinting [51], and
application-fingerprinting [15, 51, 86] attacks. Some works have
even demonstrated leakage of DNN models [51] and cryptographic
keys [107]. Still, by constraining the software interface, all of these
attacks can be mitigated in practice. The other two categories use
side channels to monitor hardware behavior.

Concretely, the second category is hardware-based same-core
attacks that typically exploit that the interrupt has to be executed
by the core under attack. Several attacks use busy loops of timing
measurements and measure when they are interrupted as timer
jumps, i.e., latency spikes [13, 46, 74, 87, 88]. More recent works
exploit CPU features that do not depend on busy-looping the SMT
thread under attack or a co-located SMT thread on the same physical
core [67, 106, 107]. Hence, all of these attacks depend on being co-
located on the same core as the attacker. In this setting, powerful
attacks are possible, including inter-keystroke timing attacks [46,
74, 87, 88], website-fingerprinting attacks [13, 67, 106, 107], as well
as leakage of DNN models and cryptographic keys [107].

The third category is cross-core hardware-based attacks that
do not exploit system interfaces and also do not require a busy
loop on the victim core. Our work is the first attack to demonstrate
this possibility by exploiting both the user interrupts feature as
well as the virtualized inter-processor interrupts feature. Our attack
generalizes in the virtualized setting to any VM that can send and
measure the latency of inter-processor interrupts.

Mitigations. To mitigate the IPI side channel effectively and effi-
ciently, hardware changes may be necessary. We believe that the
current implementation sends IPI messages and lets cores check
and decide which IPI messages they accept. However, it is unclear
why the system bus transmitting interrupts between cores has to
be used for local and I/O interrupts that only affect a single core.
This approach inherently allows us to probe the corresponding
system bus and, thereby, the interrupt activity of other cores. A
different design of this system bus could affect our attack. Similarly,
changing how cores check whether they should receive an interrupt
would also have the potential of mitigating our attack.

While our conclusion is that closing the IPI side channel requires
re-designing the corresponding interrupt handling hardware, we
still want to discuss mitigations proposed by the academic commu-
nity (cf. Table 3) against prior interrupt-driven attacks:

The first category is to remove the /proc interface or make
it privileged [13, 105]. Virtual machines also cannot access the
host’s /proc interface for security reasons. This approach has been
implemented on various systems [74, 107], leaving only other chan-
nels open to mitigate. However, with the /proc interface disabled
or unavailable inside a VM, our attack still works. For user inter-
rupts, we could also limit the attack surface by only allowing a
selected number of trusted applications to use user interrupts. As
user interrupts require kernel support to register a receiver and
a sender thread, we suggest to restrict these kernel interactions
to certain user groups or applications, e.g., specific drivers. This
restriction would no longer allow an attacker to take advantage of
the user-interrupt side channel while making user interrupts avail-
able for applications that need them. We do not consider entirely
disabling user interrupts a viable option due to their low delay times

Cross-Core Interrupt Detection using Unprivileged and Virtualized IPIs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

compared to POSIX signals. This restriction is not possible for IPI
virtualization, as modern operating systems require IPIs for fast
inter-processor communication, and disabling IPI virtualization for
all untrusted VMs would remove the performance improvements
gained by IPI virtualization for these VMs.

The second category of mitigations is to constraint either the co-
location of the attacker workload with the victim or its placement
on the interrupt-receiving core [67]. However, as we can detect
interrupts on any core, this approach does not affect our attack,
even when isolating interrupts to a separate physical core. Also,
randomizing interrupt core assignments does not affect our attack.

The third category is to constrain timers, e.g., by making them
privileged, as has been discussed in numerous works [36, 45, 47, 48,
52, 61, 94, 106]. Similarly, the fourth category is to modify timers
in a way that they do not depend on the secret information any-
more [3, 42, 52, 94]. Both approaches have limited effect in practice
as the community has found many ways to bypass them, e.g., using
counting threads [47, 73, 76, 100] and timeless methods [93].

A fifth category is to introduce noise [74]. Noise has been stud-
ied as a mitigation against power side channels as well [43]. How-
ever, from this context, it is also known that noise only reduces
the side channel signal but cannot eliminate it [43]. Consequently,
adding noise also can only reduce the signal, which, according
to Schwarz et al. [74], is sufficient against inter-keystroke timing
attacks. However, it is unclear whether similar approaches to in-
ject noise could be sufficient to mitigate interrupt side-channel
attacks in other attack scenarios such as website- and application
fingerprinting, or leakage of cryptographic keys or DNN models.

Generic Side-Channel Mitigations. A generic side-channel mit-
igation covering interrupt side channels as well, is side-channel
detection, e.g., using performance counters [62]. Intel suggests that
user interrupts can be tracked through architectural Last Branch
Records (LBRs) and Intel Processor Trace, which record user inter-
rupts the same way as normal interrupts [33]. Despite this, it is
difficult to distinguish a benign workload using the IPI side chan-
nel for high-frequency message passing between processes and a
malicious workload using user IPIs or virtualized IPIs for an attack.

Beyond Side Channels Exploitation of Inter-Processor Interrupts.
Inter-processor interrupts provide multi-core and multi-processor
systems with a means to communicate and synchronize across
cores. A common example is the invalidation of a virtual memory
mapping, which is cached by the TLB, requiring a so-called TLB
shootdown, a coordinated operation across multiple processors
or processor cores to invalidate the corresponding TLB entries
across all cores. Wang et al. [96] exploit this behavior to spy on the
accessed bit in the page-table entry of an SGX enclave. Zhang et al.
[108] exploit IPIs to preempt a victim, amplifying their Prime+Probe
attack. Zhang and Reiter use IPIs to continuously flush the caches
of other cores to mitigate cache attacks on these [109]. However,
none of these works studies the timing of IPIs themselves.

Trusted Execution Environments. Considering the emerging con-
cept of trusted execution environments (TEEs) such as Intel TDX,
Intel SGX, and AMD SEV-SNP, interrupt side channels may pose a
relevant attack vector. We consider two attack scenarios.

The first category is the case of amalicious host. With SGX-
Step [91] (Intel SGX) and SEV-Step [99] (AMD SEV-SNP), the host
sets up the APIC timer to trigger an external interrupt shortly
after entering the protected guest to single- and zero-step the
guest. This can be used to determine instructions executed [99],
amplify power side channels [49], or assist microarchitectural at-
tacks [5, 56, 75, 90, 92]. Intel TDX includes a mitigation against
single- and zero-stepping [34] to prevent these kinds of attacks. As
the host has to be able to inject interrupts, e.g., for device emula-
tion, TDX and AMD SEV-SNP allow the host to arbitrarily inject
interrupts. Schlüter et al. [72] showed that a malicious host can
inject interrupt vectors typically used for software interrupts, such
as syscalls, to change register values on AMD SEV-SNP and Intel
TDX. WeSee[71] injects interrupts with the interrupt number re-
served for the virtualization exception leading the guest to assume
that such an exception occurred on AMD SEV-SNP. Sridhara et al.
[83] send signals to SGX enclaves to modify the enclave state. Con-
stable et al. [12] propose a hardware ISA extension to make SGX
enclaves interrupt aware, allowing an enclave to detect and miti-
gate interrupt-based attacks. While our IPI side channel does work
in a malicious host scenario, the virtual machine host receives all
external interrupts and only forwards them to the guest if necessary.
Hence, the host already knows which interrupts occur at a given
time without requiring a side channel.

The second category is the case of amalicious guest. As the
code executed inside of an SGX enclave, a TDX guest, or an SEV-
SNP guest, is not directly accessible by the host, nefarious activity
by the guest can be challenging for the host to detect. While there
are no interrupt-related attacks from inside a TEE yet, there are
multiple works discussing and showing the threat of malicious
enclaves in Intel SGX [73, 77]. There are also multiple works that
try to detect or defend against malicious SGX enclaves [58, 97, 110].
Similar to existing interrupt-detection-based attacks, an attacker
could use rdtsc [74] or a counting thread [73] to detect interrupts
on the same core in TDX and SEV-SNP or the tpause instruction
to detect interrupts on a sibling logical core in TDX [34, 67]. Count-
ing threads have also been explored in SGX enclaves as a defense
against interruption-based attacks [8–10, 59]. The IPI side channel
does not work inside AMD SEV-SNP, Intel TDX, or Intel SGX at
the time of writing. Both AMD SEV-SNP and Intel TDX require the
host to handle the routing and injection of IPIs sent from inside
guests. The feature set inside Intel SGX is even more limited and
excludes sending of user or regular IPIs. Hence, it is not possible to
mount the IPI side channel from inside these TEEs.

8 Conclusion
While user interrupts and IPI virtualization drastically reduce the
performance cost of cross-process and cross-core signaling, our
work shows that these new features can be exploited to detect
interrupts delivered to any core in native and cross-VM scenarios.
We used the IPI side channel for cross-core covert communication
between two processes that send IPIs to themselves, with a native
true capacity of 434.7 kbit/s (𝑛=100, 𝜎𝑥=0.03) and cross-VM true
capacity of 3.47 kbit/s (𝑛=100, 𝜎𝑥=0.01). We presented an inter-
keystroke timing attack with an 𝐹1 score of 97.9% and a standard
deviation of 6.15ms. Furthermore, we demonstrated a cross-core

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Fabian Rauscher and Daniel Gruss

website fingerprinting attack that achieves an 𝐹1 score 89.0% in
an open-world native scenario and 71.0% in an open-world cross-
VM scenario, highlighting the security and privacy implications.
While there are mitigations against interrupt side-channel attacks,
the change in the attack scenario (i.e., cross-core cross-VM) also
bypasses several mitigations. We conclude that bringing interrupts
to userspace and providing VMs with low latency access to IPIs
can have unforeseen side effects, resulting in an increased attack
surface for security- and privacy-related applications.

Acknowledgments
We thank the anonymous reviewers and our anonymous shepherd
for their guidance, comments, and suggestions. We would also
like to thank our DIMVA reviewers for their feedback on an ear-
lier version of this paper. Furthermore, we thank Andreas Kogler
for his feedback and insightful discussions. This research is sup-
ported in part by the European Research Council (ERC project
FSSec 101076409), and the Austrian Science Fund (FWF project
NeRAM I6054). Additional funding was provided by generous gifts
from Red Hat, and Intel. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding parties.

References
[1] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

García, and Nicola Tuveri. 2018. Port Contention for Fun and Profit. In S&P.
[2] Alexa Internet, Inc. 2023. The top 1 million sites on the web. https://www.

alexa.com/topsites
[3] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. 2010. Deter-

minating timing channels in compute clouds. In CCSW.
[4] Daniel J. Bernstein. 2005. Cache-Timing Attacks on AES. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf
[5] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss,

and Michael Schwarz. 2022. ÆPIC Leak: Architecturally Leaking Uninitialized
Data from the Microarchitecture. In USENIX Security.

[6] Elad Carmon, Jean-Pierre Seifert, and AvishaiWool. 2017. Photonic Side Channel
Attacks Against RSA. In HOST.

[7] Sebastien Carre, Victor Dyseryn, Adrien Facon, Sylvain Guilley, and Thomas
Perianin. 2019. End-to-end automated cache-timing attack driven by Machine
Learning. Journal of Cryptology (2019).

[8] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang. 2019. De-
feating Speculative-Execution Attacks on SGX with HyperRace. In Dependable
and Secure Computing (DSC).

[9] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang,
XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. 2018. Racing in hyperspace:
closing hyper-threading side channels on SGX with contrived data races. In
S&P.

[10] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.
Detecting Privileged Side-Channel Attacks in Shielded Execution with DéJà Vu.
In AsiaCCS.

[11] Zhibo Chen, Yi-Qun Xu, Hongbin Wang, and Daoxing Guo. 2020. Deep STFT-
CNN for spectrum sensing in cognitive radio. IEEE Communications Letters
(2020).

[12] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric Xing, Ilya
Alexandrovich, Taesoo Kim, Frank Piessens, Mona Vij, and Mark Silberstein.
2023. {AEX-Notify}: Thwarting Precise {Single-Stepping} Attacks through
Interrupt Awareness for Intel {SGX} Enclaves. In USENIX Security.

[13] Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. 2022. There’s
always a bigger fish: a clarifying analysis of a machine-learning-assisted side-
channel attack. In ISCA.

[14] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. 2018.
Observations on typing from 136 million keystrokes. In CHI Conference on
Human Factors in Computing Systems.

[15] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. 2016. No Pardon for
the Interruption: New Inference Attacks on Android Through Interrupt Timing
Analysis. In S&P.

[16] Dmitry Evtyushkin and Dmitry Ponomarev. 2016. Covert Channels Through
Random Number Generator: Mechanisms, Capacity Estimation and Mitigations.
In CCS.

[17] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. 2018. BranchScope: A New Side-Channel Attack on Directional
Branch Predictor. In ASPLOS.

[18] Anders Fogh. 2016. Covert Shotgun: automatically finding SMT covert channels.
https://cyber.wtf/2016/09/27/covert-shotgun/

[19] Google Issue Tracker. 2017. Android O prevents access to /proc/stat. https:
//issuetracker.google.com/issues/37140047

[20] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In USENIX Security.

[21] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Trachtenberg,
Jason Hennessey, Alex Ionescu, and Anders Fogh. 2019. Page Cache Attacks. In
CCS.

[22] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA.

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template At-
tacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security.

[24] Zeng Guang. 2022. KVM Commit "[v9,0/9] IPI virtualization support for
VM". https://patchwork.kernel.org/project/kvm/cover/20220419153155.11504-
1-guang.zeng@intel.com/

[25] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games –
Bringing Access-Based Cache Attacks on AES to Practice. In S&P.

[26] Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar. 2017.
PerfWeb: How to violate web privacy with hardware performance events. In
ESORICS.

[27] Jiri Herrmann, Yehuda Zimmerman, Dayle Parker, and Scott Radvan. 2019. Red
Hat Enterprise Linux 7 - Virtualization Tuning and Optimization Guide.

[28] Jingshan Huang, Binqiang Chen, Bin Yao, and Wangpeng He. 2019. ECG ar-
rhythmia classification using STFT-based spectrogram and convolutional neural
network. IEEE access (2019).

[29] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In S&P.

[30] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

[31] Intel. 2022. Intel Architecture Instruction Set Extensions and Future Features.
[32] Intel. 2023. Intel 64 and IA-32 Architectures Software Developer’s Manual

Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z.
[33] Intel. 2024. Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3 (3A, 3B & 3C): System Programming Guide.
[34] Intel. 2024. Intel Trust Domain Extensions Module Base Architecture Speci-

fication. https://www.intel.com/content/www/us/en/developer/tools/trust-
domain-extensions/documentation.html

[35] Intel. 2024. UINTR Linux Kernel. https://github.com/intel/uintr-linux-kernel
[36] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2018. MASCAT: Preventing

microarchitectural attacks before distribution. In CODASPY.
[37] Suman Jana and Vitaly Shmatikov. 2012. Memento: Learning Secrets from

Process Footprints. In S&P.
[38] Linux Kernel. 2022. https://cdn.kernel.org/pub/linux/kernel/v6.x/ChangeLog-

6.0. In Linux Kernel Change Log 6.0.
[39] Simon Kissler and Owen Hoyt. 2005. Using Thin Client Technology to Reduce

Complexity and Cost. In ACM SIGUCCS conference on User services.
[40] Paul Kocher. 1996. Timing Attacks on Implementations of Diffe-Hellman, RSA,

DSS, and Other Systems. In CRYPTO.
[41] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.

In CRYPTO.
[42] David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers for Uncertain

Times. In USENIX Security.
[43] Itamar Levi, Davide Bellizia, David Bol, and François-Xavier Standaert. 2020.

Ask Less, Get More: Side-Channel Signal Hiding, Revisited. IEEE Transactions
on Circuits and Systems 67, 12 (2020), 4904–4917.

[44] Wenhao Li, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan. 2015.
ReducingWorld Switches in Virtualized Environment with Flexible Cross-world
Calls. ACM SIGARCH Computer Architecture News 43, 3S (2015), 375–387.

[45] Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD Prefetch Attacks
through Power and Time. In USENIX Security.

[46] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice,
and Stefan Mangard. 2017. Practical Keystroke Timing Attacks in Sandboxed
JavaScript. In ESORICS.

[47] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security.

[48] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Mau-
rice, and Daniel Gruss. 2020. Take a Way: Exploring the Security Implications
of AMD’s Cache Way Predictors. In AsiaCCS.

[49] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power
Side-Channel Attacks on x86. In S&P.

https://www.alexa.com/topsites
https://www.alexa.com/topsites
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cyber.wtf/2016/09/27/covert-shotgun/
https://issuetracker.google.com/issues/37140047
https://issuetracker.google.com/issues/37140047
https://patchwork.kernel.org/project/kvm/cover/20220419153155.11504-1-guang.zeng@intel.com/
https://patchwork.kernel.org/project/kvm/cover/20220419153155.11504-1-guang.zeng@intel.com/
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://github.com/intel/uintr-linux-kernel

Cross-Core Interrupt Detection using Unprivileged and Virtualized IPIs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[50] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In S&P.

[51] Haoyu Ma, Jianwen Tian, Debin Gao, and Chunfu Jia. 2021. On the Effectiveness
of Using Graphics Interrupt as a Side Channel for User Behavior Snooping.
Transactions on Dependable and Secure Computing 19, 5 (2021), 3257–3270.

[52] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:
rethinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. ACM SIGARCH Computer Architecture News (2012).

[53] ClémentineMaurice, ChristophNeumann, Olivier Heen, andAurélien Francillon.
2015. C5: Cross-Cores Cache Covert Channel. In DIMVA.

[54] Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. 2015. Reverse Engineering Intel Last-Level Cache Complex
Addressing Using Performance Counters. In RAID.

[55] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel
Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello from
the Other Side: SSH over Robust Cache Covert Channels in the Cloud. In NDSS.

[56] Daniel Moghimi. 2023. Downfall: Exploiting Speculative Data Gathering. In
USENIX Security.

[57] John Monaco. 2018. SoK: Keylogging Side Channels. In S&P.
[58] Soo Jung Moon, Hoorin Park, and Wonjun Lee. 2021. Preventing enclave mal-

ware with intermediate enclaves on semi-honest cloud platforms. In BigComp.
[59] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof

Fetzer. 2018. Varys: Protecting SGX Enclaves from Practical Side-Channel
Attacks. In USENIX ATC.

[60] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and
Countermeasures: the Case of AES. In CT-RSA.

[61] Yoshihiro Oyama. 2019. How does malware use RDTSC? A study on operations
executed by malware with CPU cycle measurement. In DIMVA.

[62] Matthias Payer. 2016. HexPADS: a platform to detect “stealth” attacks. In ESSoS.
[63] Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCan.
[64] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In USENIX Security.

[65] Yi Qin and Chuan Yue. 2018. Website Fingerprinting by Power Estimation Based
Side-Channel Attacks on Android 7. In TrustCom/BigDataSE.

[66] Jean-Jacques Quisquater and David Samyde. 2001. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards. In E-smart.

[67] Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel Gruss. 2024. Idle-
Leak: Exploiting Idle State Side Effects for Information Leakage. In NDSS.

[68] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2017. Automated website fingerprinting through deep learning. In
NDSS.

[69] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In CCS.

[70] Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi. 2021.
Streamline: a fast, flushless cache covert-channel attack by enabling asynchro-
nous collusion. In ASPLOS.

[71] Benedict Schlüter, Supraja Sridhara, Andrin Bertschi, and Shweta Shinde. 2024.
WeSee: Using Malicious# VC Interrupts to Break AMD SEV-SNP. arXiv preprint
arXiv:2404.03526 (2024).

[72] Benedict Schlüter, Supraja Sridhara, Mark Kuhne, Andrin Bertschi, and Shweta
Shinde. 2024. Heckler: Breaking Confidential VMs with Malicious Interrupts. In
USENIX Security.

[73] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In DIMVA.

[74] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, Raphael Spreitzer, and Stefan Mangard. 2018. KeyDrown: Eliminating
Software-Based Keystroke Timing Side-Channel Attacks. In NDSS.

[75] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In CCS.

[76] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. 2017.
Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural
Attacks in JavaScript. In FC.

[77] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical Enclave
Malware with Intel SGX. In DIMVA.

[78] Martin Schwarzl, Erik Kraft, and Daniel Gruss. 2023. Layered Binary Templating.
In ACNS.

[79] Anatoly Shusterman, Lachlan Kang, YardenHaskal, YosefMeltser, PrateekMittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through
The Cache Occupancy Channel. In USENIX Security.

[80] Laurent Simon, Wenduan Xu, and Ross Anderson. 2016. Don’t Interrupt Me
While I Type: Inferring Text Entered Through Gesture Typing on Android
Keyboards. PETS (2016).

[81] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. 2001. Timing Analysis
of Keystrokes and Timing Attacks on SSH. In USENIX Security.

[82] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Mangard. 2016.
Exploiting data-usage statistics for website fingerprinting attacks on Android.
In ACM Conference on Security & Privacy in Wireless and Mobile Networks.

[83] Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, and Shweta Shinde. 2024.
SIGY: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals. arXiv
preprint arXiv:2404.13998 (2024).

[84] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. 2018. Microarchi-
tectural Minefields: 4K-aliasing Covert Channel and Multi-tenant Detection in
IaaS Clouds. In NDSS.

[85] Jakub Szefer. 2016. Survey of Microarchitectural Side and Covert Channels,
Attacks, and Defenses. Cryptology ePrint Archive, Report 2016/479 (2016).

[86] Xiaoxiao Tang, Yan Lin, Daoyuan Wu, and Debin Gao. 2018. Towards Dynami-
cally Monitoring Android Applications on Non-rooted Devices in the Wild. In
WiSec.

[87] Albert Tannous, Jonathan T. Trostle, Mohamed Hassan, Stephen E. McLaughlin,
and Trent Jaeger. 2008. New Side Channels Targeted at Passwords. In ACSAC.

[88] Jonathan T Trostle. 1998. Timing Attacks Against Trusted Path. In S&P.
[89] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM Martins,

Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H Leung, and Larry
Smith. 2005. Intel virtualization technology. Computer 38, 5 (2005), 48–56.

[90] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdomwith Transient
Out-of-Order Execution. In USENIX Security.

[91] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control. InWorkshop on System
Software for Trusted Execution.

[92] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In CCS.

[93] Tom Van Goethem, Christina Pöpper, Wouter Joosen, and Mathy Vanhoef. 2020.
Timeless Timing Attacks: Exploiting Concurrency to Leak Secrets over Remote
Connections. In USENIX Security.

[94] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. 2011. Eliminating fine
grained timers in Xen. In CCSW.

[95] VMware. 2007. Understanding Full Virtualization, Paravirtualization, and Hard-
ware Assist.

[96] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. In
CCS.

[97] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss. 2019. SGXJail:
Defeating Enclave Malware via Confinement. In RAID.

[98] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution. https://foreshadowattack.eu/foreshadow-NG.pdf

[99] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas Eisenbarth. 2024. SEV-
Step: A Single-Stepping Framework for AMD-SEV. TCHES (2024), 180–206.

[100] John CWray. 1992. An Analysis of Covert Timing Channels. Journal of Computer
Security (1992).

[101] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud. In USENIX Security.

[102] Shuochao Yao, Ailing Piao, Wenjun Jiang, Yiran Zhao, Huajie Shao, Shengzhong
Liu, Dongxin Liu, Jinyang Li, Tianshi Wang, Shaohan Hu, et al. 2019. Stfnets:
Learning sensing signals from the time-frequency perspective with short-time
fourier neural networks. In The World Wide Web Conference.

[103] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces
Using the FLUSH+ RELOAD Cache Side-channel Attack. Cryptology ePrint
Archive, Report 2014/140 (2014).

[104] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security.

[105] Kehuan Zhang and XiaoFeng Wang. 2009. Peeping Tom in the Neighborhood:
Keystroke Eavesdropping on Multi-User Systems. In USENIX Security.

[106] Ruiyi Zhang, Taehyun Kim, Daniel Weber, andMichael Schwarz. 2023. (M)WAIT
for It: Bridging the Gap between Microarchitectural and Architectural Side
Channels. In USENIX Security.

[107] Xin Zhang, Zhi Zhang, Qingni Shen, Wenhao Wang, Yansong Gao, Zhuoxi
Yang, and Jiliang Zhang. 2024. SegScope: Probing Fine-grained Interrupts via
Architectural Footprints. In HPCA.

[108] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM Side Channels and Their Use to Extract Private Keys. In CCS.

[109] Yinqian Zhang and MK Reiter. 2013. Düppel: retrofitting commodity operating
systems to mitigate cache side channels in the cloud. In CCS.

[110] Zeyu Zhang, Xiaoli Zhang, Qi Li, Kun Sun, Yinqian Zhang, Songsong Liu,
Yukun Liu, and Xiaoning Li. 2021. See through Walls: Detecting Malware in
SGX Enclaves with SGX-Bouncer. In AsiaCCS.

https://foreshadowattack.eu/foreshadow-NG.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware-based Virtualization
	2.2 Side-Channel Attacks
	2.3 Interrupt Detection
	2.4 Website Fingerprinting

	3 IPI Side Channel
	3.1 User Interrupts
	3.2 IPI Virtualization
	3.3 Timing Behaviour

	4 Covert Channel
	4.1 Covert Channel Design
	4.2 Evaluation

	5 Keystroke Detection
	5.1 Threat Model and Attack Setup
	5.2 Attack Evaluation

	6 Website Fingerprinting
	6.1 Threat Model and Attack Setup
	6.2 Attack
	6.3 Evaluation
	6.4 Previous Work

	7 Related Work & Discussion
	8 Conclusion
	References

