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Abstract
Trusted execution environments (TEEs) protect applications run-
ning inside of them from untrusted host systems. The host can not
access or modify the memory of applications protected by a TEE.
Intel TDX is a recently introduced TEE that allows for the execu-
tion of arbitrary code, including entire operating systems, inside
a protected environment. Prior work has attacked AMD SEV-SNP,
AMD’s counterpart to Intel TDX, using performance counters, by
leaking sensitive information through them, e.g., which branches
are taken. Intel TDX is thought not to be affected by such attacks,
as it disables performance counters when entering the protected
guests (TDs) to mitigate these attacks.

In this paper, we bypass the protections of Intel TDX, allowing
us to not only recover secrets, such as private keys, but also expand
on what is thought possible by leaking arbitrary memory using
performance counters. We analyze available performance counters
on the recent Intel Emerald Rapids microarchitecture, finding 8 that
track events for the whole physical core and not just the current
logical core. We use this to bypass the Intel TDX mitigation against
performance counter-based attacks by monitoring TDs from the
sibling logical core. One of these counters tracks uOPs executed,
allowing an attacker to gain valuable insight into victim TDs. Us-
ing this information, we recover an RSA-2048 private key from a
TD running MbedTLS with an average edit distance of only 0.92
bits. Furthermore, this performance counter includes speculatively
executed uOPs, enabling the use of a large number of previously
unusable Spectre compare gadgets in Spectre attacks. With this
discovery, we leak TD memory at a rate of 52.6 bit/s and break
KASLR in less than 2 s. Finally, we break the recently introduced
inter-keystroke timing defense of OpenSSH, allowing us to detect
real keystrokes with an 𝐹1 score of 99.6 %.
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1 Introduction
To reduce hardware and maintenance costs, an increasing number
of companies are moving their infrastructure to the cloud. This
change comes with additional confidentiality concerns, as sensitive
data, e.g., customer data, company secrets, and cryptographic keys,
are now stored and processed on hardware owned and operated by
a third party. With traditional virtualization technologies, the cloud
provider has full access to all data in the virtual machine (VM).
Thus, a data breach or malicious insider at the cloud provider can
have severe consequences for their customers. To mitigate these
concerns, trusted execution environments (TEEs) have been intro-
duced by hardware vendors. TEEs provide isolated environments
that protect the confidentiality and integrity of applications and
data in the TEE from the host system by protecting the memory and
register state of the TEE. Traditional TEEs, e.g., Intel SGX or ARM
TrustZone, require applications to be written specifically for the
specific TEE implementation [6, 16], limiting their applicability and
portability. Prior work demonstrated that generic programs can be
ported to Intel SGX using a library OS approach [74], but resulting
programs are still limited due to the design details of SGX. Recently,
vendors introduced TEEs that allow entire VMs to run inside of
them, such as AMD SEV-SNP [2] and Intel TDX [32]. These confi-
dential VMs (CVMs) allow users to run unmodified applications on
general-purpose operating systems in TEEs.

The TEE threat model includes a malicious machine owner, with
control over the host operating system and physical access to the
machine [2, 16, 32]. As such, the attack surface of this threat model
is significantly larger than the traditional unprivileged user-space
attacker model. Many prior works have demonstrated powerful
attacks on SGX. Early works demonstrated that the fact that the
host and the enclave share the same hardware allows for cache side-
channel attacks [8, 26, 54, 67, 79, 80]. Many attacks on TEEs rely on
functionality that is only available as a malicious hypervisor, e.g.,
page faults [82, 85], single-stepping [64, 77, 82, 84], performance
counters [22, 51], or firmware modifications [18].

Recently, multiple works were released on performance counter
based attacks on AMD SEV-SNP, as SEV did not protect against
these type of attacks. Lou et al. [51] were the first to demonstrate
a website fingerprinting attack on AMD SEV-SNP using perfor-
mance counters. Gast et al. [22] demonstrated more fine-grained
performance-counter-based attacks on AMD SEV-SNP, including
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the recovery of RSA keys, TOTP secrets, and breaking the HQC post-
quantum signature scheme. Both works mention that Intel TDX
is not affected by their attacks, as Intel TDX disables performance
counters when entering the TEE. Weissteiner et al. [81] proposed
a method to decorrelate performance counter values between the
host and the TEE, mitigating fine-grained performance counter
leakage from TEEs. However, they only mitigate leakage from per-
formance counters on the same logical core, without considering
potential leakage across hyperthreads.

In this paper, we break Intel’s mitigation against performance
counter attacks and show how it is still possible to leak fine-grained
information through them, allowing us to leak RSA keys and per-
form Spectre attacks on compare gadgets regardless of the opera-
tions they perform. We exploit performance counters that monitor
the whole physical core tomonitor TDXCVMs, called trust domains
(TDs), from a sibling logical core. This is possible as Intel TDX only
disables performance counters on the logical core the TD is running
on, but not the entire physical core. We analyze available perfor-
mance counters on a recent Intel processor and find 8 that count
events for the whole physical core. One of these performance coun-
ters, UOPS_EXECUTED.CORE, monitors the precise micro OP (uOP)
throughput of the TD, allowing us to gain detailed information on
the TD’s execution flow. We leverage UOPS_EXECUTED.CORE to fin-
gerprint code passages inside the TD, identifying secret-dependent
code execution. Using this information, we recover a full RSA-
2048 private key from a TD running MbedTLS by only monitoring
400 encryptions happening in the TD. The recovered key has an
average Levenshtein distance of only 0.92 bits, meaning on aver-
age less than one bit has to be changed in the recovered key to
get the real key, showing the high accuracy of our attack. Addi-
tionally, UOPS_EXECUTED.CORE also counts speculatively executed
uOPs. Hence, our attack is a new way to leak information for specu-
lative execution attacks on Intel TDX using UOPS_EXECUTED.CORE
that is universal across Spectre transmission channels.

Our discovery introduces an asymmetry in favor of the attacker
when considering the four gadget types in Spectre attacks [10],
namely prefetch, compare, index, and execute gadgets. Index gad-
gets have been explored the most so far, as they are easy to find
and use [41, 72]. However, our attack provides a substantial benefit
for all other gadget types: More specifically, the attacker can infer
the outcome directly from the UOPS_EXECUTED.CORE performance
counter. Hence, there is no need for any other specific transmission
channel, such as a cache side channel, to leak the secret-dependent
outcome of the gadget. Thus, we can use previously unusable gad-
gets for Spectre attacks. We demonstrate this by abusing the Linux
kernel’s implementation of the memchr function to leak arbitrary
memory from a TD at a rate of 52.6 bit/s with an error rate of only
0.6 %, breaking the confidentiality guarantees of Intel TDX. We
also demonstrate a KASLR break using our generic Spectre attack
on TDs, leaking the KASLR offset in less than 2 s. Finally, we dis-
cover that the recently introduced inter-keystroke timing defense
introduced to OpenSSH [1] is insufficient for a CVM scenario. By
performing precise timing measurements and taking advantage of
the high amount of control an attacker has in the traditional TEE
threat model, we are able to detect real keystrokes with an 𝐹1 score
of 99.6 % and a temporal standard deviation of only 5.64ms, despite
the presence of a large number of fake keystrokes generated by

the mitigation. Furthermore, we show that, even if this timing side
channel is mitigated, the real keystrokes can still be determined
using UOPS_EXECUTED.CORE.

In summary, our work makes the following contributions:
• We systematically analyze available performance counters
on a recent Intel CPU for cross-core leakage, identifying
8 counters that count events for the whole physical core and
1 counter that is a particularly high threat to Intel TDX.

• We mount an attack on MbedTLS 3.5.2 running inside of a
TD using this dangerous performance counter to bypass In-
tel’s mitigation to recover an RSA-2048 key with an average
Levenshtein distance from the real key of only 0.92 bits.

• Wedemonstrate Spectre attacks exploiting the inherent asym-
metry of the UOPS_EXECUTED.CORE performance counter
channel, i.e., any Spectre gadget encoding information can
be used; and use it to leak arbitrary memory at a rate of
52.6 bit/s and break KASLR in <2 s.

• We demonstrate that OpenSSH’s recent inter-keystroke tim-
ing defense is insufficient for CVMs, allowing us to distin-
guish between real and fake keystrokes with an 𝐹1 score of
99.6 %, thus, re-enabling inter-keystroke timing attacks.

Outline. We provide background in Section 2. In Section 3, we
analyze available performance counters for cross-core leakage. In
Section 4, we recover a full RSA-2048 private key from a TD run-
ningMbedTLS, using performance-counter leakage. In Section 5, we
demonstrate Spectre attacks using the new UOPS_EXECUTED.CORE
channel for data leakage from speculative execution on Intel TDX.
In Section 6, we break openSSH’s recent inter-keystroke timing de-
fense. We discuss possible mitigations and related work in Section 7.
We conclude in Section 8.

Responsible Disclosure. We responsibly disclosed our findings to
Intel on August 7, 2025 and to the OpenSSH team on August 25,
2025. Intel recommends developers to follow their security best
practices for side-channel resistance. The OpenSSH team does not
consider confidential virtual machines as part of their threat model
for the inter-keystroke timing attack mitigation and will therefore
not mitigate our attack.

2 Background
In this section, we first discuss Trusted Execution Environments
(TEEs) and, in more detail, Intel TDX. We also provide a brief
overview of hardware performance counters (on Intel processors)
and how they can be used both for malicious and benign purposes.

2.1 Trusted Execution Environments
Trusted Execution Environments (TEEs) are an emerging technol-
ogy that processor vendors introduce to offer increased confiden-
tiality and integrity guarantees compared to what traditional user-
kernel isolation can provide [2, 5, 34, 35]. The first generation of
TEEs mainly protected specific application components, e.g., Intel
Software Guard Extensions (SGX) [34] and ARM TrustZone [6],
focused on a scenario where a trusted application must be pro-
tected from a malicious user or compromised system. Since this
design limits the potential usage scenarios to small applications
handling small amounts of highly sensitive data e.g., fingerprints
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or cryptographic material, or for digital rights management (DRM),
the scientific community quickly realized the need for TEEs that
allow users to run any system and application as a TEE [74]. As
a consequence, a new type of TEEs emerged that focuses on the
scenario where an entire virtual machine must be protected from a
malicious or compromised host. Since similar confidentiality guar-
antees (but not necessarily integrity guarantees [83]) are provided,
these virtual machines are also called confidential virtual machines
(CVMs). Both AMD and Intel realized their respective CVM imple-
mentation: AMD Secure Encrypted Virtualization (SEV) [3] and
Intel Trust Domain Extensions (TDX) [32].

2.2 Intel TDX
Intel calls CVMs running on Intel TDX trust domains (TDs) [35].
The open-source TDX module is designed to handle the encryption
and management of guest memory and saved guest state within the
trust domain virtual processor state area (TDVPS). The TDX mod-
ule operates in SEAM root execution mode, which is protected from
the host, and interfaces between the TEE and the host. Internally,
the TDX module uses existing Intel Virtual Machine Extensions
(VMX) for virtualization. To protect against malicious modifications,
the TDX module is signed by Intel and can only be loaded if the
processor can verify the signature. TDX splits the guest’s physical
memory into a shared section, accessible by both host and guest,
and a private, encrypted section, only accessible to the guest and
the TDX module. This design allows for fast communication with
the host via the shared section, while still protecting the guest’s
private memory. The TDX module handles page table management
for the private guest-physical memory, while the host manages the
shared memory’s page tables. A dedicated bit in the guest physical
address allows the guest to distinguish between shared and private
memory, avoiding accidental interactions with shared memory. Ad-
ditionally, shared memory is not executable to mitigate certain bugs
and attack vectors. To encrypt the memory of TDs, TDX employs
Intel’s Total Memory Encryption - Multi Key (TME-MK). TDX splits
TME-MK’s key ID (HKID) range into a public and a private part,
reserving the private range for the TDX module and TDs. Each
64-bit region is validated against a cryptographic MAC on every
memory access to protect against memory corruption, e.g., due to
physical interference. However, the CPU is still shared between
all TDX guests and the host, allowing for potential information
leakage through shared hardware components.

Information leakage from TEEs is a major concern. While first
side-channel attacks have been demonstrated, in the context of Intel
SGX [8, 21, 26, 30, 43, 54, 67, 79, 80] and Arm TrustZone [48, 66],
transient-execution attacks have been found to be an even more
powerful information leakage primitive [13, 41, 57, 72, 75, 76, 78].
Thereby, the TEE threat model often allows for a stronger attacker,
that can precisely control the execution of the TEE, e.g., through
single-stepping [54, 64, 77, 84, 85]. Alternatively, attackers can also
use power side channels [49] and fault attacks [14, 56, 60, 61].

Unlike AMD’s counterpart to TDX called AMD SEV-SNP, Intel
TDX employs active mitigations against some controlled chan-
nels, such as single-stepping through interrupts and zero-stepping
through page faults, and performance counter-based attacks, that
are built directly into the TDX module. The single-stepping defense

detects an attack through the number of instructions executed
and introduces noise in case an attack is detected. The defense
against page fault-based zero-stepping simply checks whether the
instruction pointer changes between two consecutive page faults
in the guest physical to host physical translations. To mitigate
performance counter-based attacks, the TDX module disables per-
formance counters when entering the TDX module through the
GLOBAL_PERF_CNTMSR and context switches performance counter
MSRs in case the TD is allowed to use them for themselves.

2.3 Hardware Performance Counters
Modern processors are highly complex and provide numerous ways
to debug, profile, and monitor the processor’s execution of soft-
ware. Hardware performance counters are particularly useful when
investigating how a piece of code exercises the CPU hardware. Per-
formance counters are provided to the user via registers that count
certain hardware events, e.g., cache hits and misses in a specific
cache level. Developers can use this information to debug perfor-
mance bottlenecks and optimize the software [59], or to monitor
software execution and detect anomalies [12, 15, 17, 44, 45, 88]. Per-
formance counters are typically only reachable from kernel space,
e.g., via Model Specific Registers (MSRs). The potential information
leakage through performance counters was already known when
Intel SGX was introduced. Intel excluded any SGX activity from all
performance counters [36]. AMD did not exclude SEV activity from
performance counters until recently in response to performance-
counter-based attacks on AMD SEV-SNP [22, 51]. Gast et al. [22]
demonstrated several end-to-end attacks, e.g., the recovery of RSA
keys from a SEV-SNP CVM. Consequently, performance-counter-
based attacks are currently considered mitigated on Intel SGX, Intel
TDX, and recent versions of AMD SEV-SNP. However, some per-
formance counters only count global information, which so far has
not been considered relevant in terms of leakage from TEEs.

3 Performance Counter Analysis
In this section, we analyze performance counters for the core do-
main and determine possible data leakage through them. We an-
alyze the available core performance counters on our Intel Xeon
Silver 4514Y Emerald Rapids CPU and determine which perfor-
mance counters allow for leakage across logical cores. From the
found performance counters, we discuss one promising counter for
attacks, UOPS_EXECUTED.CORE.

Unlike with AMD SEV-SNP, most performance counters can-
not be used to monitor guest activity [34, 35]. This is due to the
TDX module context switching the GLOBAL_PERF_CNT MSR. The
GLOBAL_PERF_CNT MSR contains a bit for each hardware perfor-
mance counter through which they can be enabled or disabled.
When entering the TDX module, the GLOBAL_PERF_CNT is set to
disable all performance counters. If a TD is allowed to use perfor-
mance counters, a GLOBAL_PERF_CNT value, as well as the values
for the other performance counter MSRs, are maintained for each
virtual core of the TD and loaded by the TDX module. As these
values are stored inside of the encrypted TD state, the host can nei-
ther read nor manipulate these values. Therefore, all performance
counters that are set up by the host on the logical core on which
the TD is run on do not count while executing the TD.
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Figure 1: Attack overview. TDX protects from performance
counter leakage on the same logical core. However, the victim
TD affects performance counters that count for the whole
physical core, which can be monitored by an attacker on the
sibling logical core.

While the context switching of GLOBAL_PERF_CNT mitigates at-
tacks on the same logical core, it does not prevent a malicious host
from tracking performance counters that count events for the whole
physical core through the use of the target’s sibling logical core. In
general, Intel differentiates between 3 types of performance coun-
ters: core, uncore, and offcore. Core performance counters track
events occurring inside of the CPU core, e.g., instructions executed
and cycles stalled. Uncore counters track events that are outside of
the core, in the uncore (including the LLC and memory controller),
e.g., DRAM interactions and data requests to MMIO, and are for the
whole CPU. Finally, offcore counters track per-core events related
to interactions between the core and the uncore, e.g., prefetches to
the L2. In this work, we focus on core domain performance coun-
ters, as information that can be gained from uncore and offcore
performance counters is limited, e.g., memory requests that go to
the L3. Core performance counters, on the other hand, provide very
specific information regarding the execution flow of a core, making
them interesting tools for leaking data from a TD.

As core performance counters provide much more fine-grained
information on the current execution flow, e.g., branches taken,
instructions retired, and mispredictions, we want to analyze them
to determine whether there are any that can be used to attack
TDs, despite the existing defenses against such attacks. Perfor-
mance counters of particular interest are the ones that count for
the whole physical core, as they can be set up on one attacker-
controlled logical core, while the sibling logical core is inside a
TD, as shown in Figure 1. Intel’s documentation regarding what
exactly some performance counters cover can be very vague. For
example, while some of the documented events explicitly mention
whether they count for the current logical core or the whole phys-
ical core, most do not [33]. Despite this, a majority of the events
only the current logical core that monitors them. This includes
events such as BR_INST_RETIRED.*, INST_RETIRED.ANY_P, and
UOPS_DISPATCHED.PORT_*. We found that performance counters
only target the whole physical core when it is explicitly mentioned
in the description of the counter, when it is part of the performance
counter name, or when it targets offcore events.

Table 1: List of performance core counters monitoring the
whole core

Performance Counter Name

CORE_SNOOP_RESPONSE.*
CPU_CLK_UNHALTED.REF_DISTRIBUTED
CPU_CLK_UNHALTED.REF_TSC*
IDQ_UOPS_NOT_DELIVERED.CORE
IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE
OFFCORE_REQUESTS.*
OFFCORE_REQUESTS_OUTSTANDING.*
UOPS_EXECUTED.CORE

1 size_t last = rdmsr(IA32_PMC0), i = 0:
2 while (!atomic_read(&done) {
3 size_t cur = rdmsr(IA32_PMC0);
4 measurements[i++] = cur-last;
5 last = cur;
6 }

Listing 1: Code of the performance counter measurement
hot loop.

We analyzed all the available performance counter events pub-
lished by Intel for our Emerald Rapids CPU Intel Xeon Silver 4514Y
[33] and listed all performance counters that we found that target
the whole core in Table 1. From the found performance counters,
UOPS_EXECUTED.CORE is a very promising tool for attacks, as the
uOP throughput of a core highly depends on the instructions ex-
ecuted. Assuming secret-dependent branches in an application,
this can leak sensitive information. Additionally, we show that
UOPS_EXECUTED.CORE also counts speculatively executed uOPs that
are never committed. This can introduce additional noise to some
attacks, but enables the use of UOPS_EXECUTED.CORE to broaden
the scope of exploitable Spectre gadgets.

UOPS_EXECUTED.CORE counts uOPs executed by the whole core.
When the CPU executes instructions, they are first translated into
simpler operations, so-called uOPs, which are in turn executed
by different execution units of the core. The number of uOPs an
instruction is translated to depends on the instructions and the sys-
tem it is running on. This information is similar to the information
leaked by single-stepping, which is actively mitigated by the TDX
module [35], making it a relevant attack vector.

We now confirm whether UOPS_EXECUTED.CORE actually counts
the uOPs executed inside of a TD, and that we do not just mea-
sure contention or other side effects between the two logical cores.
We let the TD execute either IMUL or ADD in a loop and contin-
uously measure the uOPs executed on the sibling logical core
through UOPS_EXECUTED.CORE and UOPS_EXECUTED.THREAD. The
UOPS_EXECUTED.THREAD performance counter only accounts for
the current logical core, in contrast to UOPS_EXECUTED.CORE, which
targets the whole physical core. To minimize any unnecessary over-
head, we do not track time and only record the value of the perfor-
mance counters (see Listing 1). As the measurement loop consists
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Figure 2: Measured uOPs executed using UOPS_EXECUTED.CORE
(Figure 2b) and UOPS_EXECUTED.THREAD (Figure 2a) while the
other logical core is inside of a TD and executing either
IMUL or ADD instructions in a loop. With UOPS_EXECUTED.CORE,
the two instructions can be clearly differentiated from each
other. With UOPS_EXECUTED.THREAD, the two instructions are
indistinguishable, showing that the differences observed by
UOPS_EXECUTED.CORE are from the direct influence of the TD
on the counter and not from other side effects, e.g., con-
tention.

of a fixed number of instructions that are executed, the uOPs exe-
cuted should also stay constant with slight variations, e.g., due to
misspeculation of the measurement loop. Therefore, if IMUL and
ADD can be clearly distinguished using UOPS_EXECUTED.CORE, but
not with UOPS_EXECUTED.THREAD, we are able to track uOPs ex-
ecuted inside the TD with UOPS_EXECUTED.CORE, and we are not
observing a different side effect. In case IMUL and ADD can also be
distinguished from each other with just UOPS_EXECUTED.THREAD,
then we are likely observing a different side effect, e.g., the code in
the TD affects the measurement codes branch prediction.

The results of these measurements are provided in Figure 2. With
UOPS_EXECUTED.THREAD (Figure 2a), we measure ∼62 uOPs for the
IMUL and ADD loops, making them indistinguishable from each other.
The uOPs executed do not reach 0, in this case, as the measurement
still includes the uOPs executed by the measurement code itself.
With UOPS_EXECUTED.CORE (Figure 2b), we measure ∼90 uOPs for
IMUL and ∼150 uOPs for ADD, making them clearly distinguishable,
showing that we are able to infer information about code executed
inside of a TD. Furthermore, these measurements show that uOP
throughput can also leak information on the instructions executed.

Intel defines UOPS_EXECUTED.CORE as counting all uOPs exe-
cuted, including speculatively executed instructions [33]. To con-
firm whether UOPS_EXECUTED.CORE actually includes speculatively
executed uOPs, we run a short test snippet shown in Listing 2 on our
Intel Xeon Silver 4514Y. For each measurement, we first train the
branch in line 2 not to be taken and then use UOPS_EXECUTED.CORE
to determine the uOPs executed when the branch is taken. Due to
the training, the branch will misspeculate and execute serialize

1 test rax, rax;
2 je 1f;
3 serialize;
4 .rept 32;
5 add rbx, 1;
6 .endr;
7 serialize;
8 1: nop;

Listing 2: Code to determine whether UOPS_EXECUTED.CORE
counts specultively executed uOPs.

75 80 85 90 95 100 105
100
101
102
103

Measured uOPs executed

#
ca
se
s serialize

no serialize

Figure 3: Measured uOPs executed using UOPS_EXECUTED.CORE
of the code listed in Listing 2 when the conditional branch al-
ways misspeculates, with the serialize in line 2 and without
it. As both cases commit the same instructions, the difference
in measured uOPs executed (without the serialize higher due
to more instructions being speculatively executed) confirms
that UOPS_EXECUTED.CORE also counts only speculatively exe-
cuted uOPs.

in line 3 only speculatively, which in turn stops the speculation.
We then repeat the experiment without the serialize in line 3.
Without serialize, the additions in line 5 should be executed spec-
ulatively. While with and without the serialize instruction, the
exact same number of uOPs are committed, there are more uOPs
speculatively executed without serialize. Therefore, if the uOPS
executed in the two cases differ, UOPS_EXECUTED.CORE includes
speculatively executed uOPs, even when they are never committed.

The results of our measurements are shown in Figure 3. Without
serialize, the uOPs executed are 90.1 (𝑛 = 1024, 𝜎𝑥 = 0.01). With
serialize, the uOPs executed are 82 (𝑛 = 1024, 𝜎𝑥 = 0). This con-
firms that UOPS_EXECUTED.CORE includes speculatively executed
uOPS.

4 RSA Key Recovery
In this section, we leverage UOPS_EXECUTED.CORE to perform a
full RSA-2048 private key recovery from a TD running MbedTLS
3.5.2 [4]. The MbedTLS RSA implementation is not constant-time
and uses a windowed square-and-multiply approach to perform
RSA encryption, enabling side-channel attacks. While both the
square- and themultiply-operations by themselves are implemented
in constant time, i.e., they always take the same amount of time
irrespective of the ciphertext, for each bit in the exponent (private
key), the encryption either performs a square- or a square- and a
multiply-operation. Therefore, if we can determine which opera-
tions were performed for each key bit, we can recover the private
key. Similar to prior work [22, 24, 49, 71], we configure MbedTLS
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1 //...
2 if (ei == 0 && state == 1) {
3 mpi_select(&WW, W, w_table_used_size,
4 x_index);
5 mpi_montmul(&W[x_index], &WW, N,
6 mm, &T);
7 continue;
8 }
9 //...
10 nbits++;
11 exponent_bits_in_window |=
12 (ei << (window_bitsize - nbits));
13 if (nbits == window_bitsize) {
14 for (i = 0; i < window_bitsize; i++) {
15 mpi_select(&WW, W,
16 w_table_used_size, x_index);
17 mpi_montmul(&W[x_index], &WW, N,
18 mm, &T);
19 }
20 mpi_select(&WW, W, w_table_used_size,
21 exponent_bits_in_window);
22 mpi_montmul(&W[x_index], &WW, N,
23 mm, &T);
24 //...
25 }
26 //...

Listing 3: Single loop iteration of the MbetTLS RSA
implementation [4]. When the exponent bit is 0 (square),
lines 2 to 7 are executed. When the exponent bit is 1 (square
and multiply), lines 9 to 26 are executed.

to use a window size of 1, as a working attack on a window size of
1 can be extended to arbitrary window lengths [50].

4.1 Threat Model
We follow the typical TEE threat model of a compromised host [56,
64, 69, 75, 77, 82, 84, 87]. Our host system contains a Intel Xeon
Silver 4514Y running TDX-enabled Ubuntu 24.04 [11] with TDX
module 1.5.16, the most recent version at the time of writing [37].
Our guests run Ubuntu 24.04, which was created according to the
TDX guide published by Canonical and has one virtual core. This
setup is in line with previous work [64, 82, 84] and the official
TDX threat model of a compromised cloud provider, published by
Intel [32]. We run standard MbedTLS 3.5.2 [4] and did not modify
it in any form to perform our attack.

4.2 Overview
With square-and-multiply, for each bit in the exponent, the value

to be encrypted is either squared and multiplied by the initial value
if the bit is 1 or only squared if the bit is 0. The code for processing
a single bit from the MbedTLS RSA implementation is shown in
Listing 3. MbedTLS uses the same constant time multiplication
function (mpi_montmul) for both the square and the multiply steps,
making them indistinguishable from each other. The mpi_select
is a constant-time conditional copy. While the mpi_montmul and
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Figure 4: Part of an RSA encryption using MbedTLS contain-
ing two executions of the mpi_select and mpi_montmul func-
tions. mpi_select executions start at measurements ∼100 and
∼300 highlighted in green with executions of mpi_montmul
highlighted in red.

mpi_select functions have a relatively constant uOP throughput,
the code in between them, where the exponent bits are checked,
does not. Lines 2 to 7 perform the square operation when the expo-
nent bit is 0, and lines 9 to 26 are only executed to perform square
and multiply when the exponent bit is 1. By constantly monitor-
ing uOPs executed through UOPS_EXECUTED.CORE on the sibling
logical core of the victim, it is possible to determine when which
operation is executed (mpi_montmul, mpi_select, or the code in
between) and which code path in the processing loop was taken.

The trace of uOPs executed during two executions of mpi_select
and mpi_montmul during a regular encryption running inside a TD
is shown in Figure 4. To record the trace, we use the same measure-
ment setup as described in Section 3 with a measurement point
consisting of the difference of two performance counter reads. Ex-
ecutions of mpi_select are highlighted in green between ∼100
and ∼125 as well as between ∼300 and ∼325. Almost all of the
other execution time is taken up by mpi_montmul highlighted in
red. At the end of each multiplication, the uOP throughput spikes
for a few measurements and then stabilizes, before finally having
a 1 to 2 measurement drop (at ∼100 and ∼300). This short drop is
the transition between mpi_montmul and mpi_select. When ex-
ecuting mpi_select, the throughput stabilizes with a short drop
in the middle and at the very end when transitioning to the next
mpi_montmul call. The measurements around the transitions from
mpi_montmul to the next mpi_select hold the conditional code
shown in Listing 3. With these measurements extracted, it is possi-
ble to determine which parts of the function were executed when,
therefore, leaking the key.

As it is not possible for an attacker to know at which exact
point in code a measurement point starts and stops, we require
multiple traces for a full key recovery. To minimize implementation
effort, we take advantage of a controlled channel in addition to
our UOPS_EXECUTED.CORE. We use the Intel TDX feature to block
and unblock TD pages [35] to force a VM exit between the multi-
plications, allowing us to only measure the target code (Listing 3)
together with the mpi_select calls, similar to prior work [22, 82].
Intel TDX allows the host to block the access to private pages of
TDs as an initial step for hypervisor management functions, such
as merging or splitting pages. This functionality is required for
the host to perform the TLB invalidation sequence before actual
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Figure 5: Trace of a single mpi_select together with part of
the code from Listing 3 recorded with the help of a controlled
channel. The two plateaus with a drop in the middle are the
mpi_select function, with the very short Listing 3 code being
executed directly before it.

changes to the TD mappings are made. While Intel actively tries to
mitigate zero-stepping attacks that are done using this feature, as
long as the instruction pointer makes progress between VM exits
resulting from blocked pages, the mitigation does not intervene.
During our testing, mpi_montmul and the MbedTLS RSA function
were never on the same page, allowing us to use this controlled
channel for synchronization. The guest physical addresses for these
functions can be determined by the malicious host through page
tracking proposed by Li et al. [46]. Despite this, we confirmed that
our attack works even without the use of this controlled channel, by
collecting full traces of encryptions, searching for the mpi_select
executions through pattern matching, and recovering a significant
part of the private key using this information.We did not implement
the full key recovery using pattern matching, as the mpi_select
execution is clearly visible (Figure 4). Therefore, implementing re-
liable pattern matching would only be an engineering challenge,
providing no additional scientific value.

To set up the controlled channel, we block access to the page
containing mpi_montmul and the page containing the rest of the
code provided in Listing 3 which can be found by profiling the
TDs physical memory. Whenever the TD tries to execute the reg-
ular RSA logic it will result in a VM exit, returning the control
to the host. In this case we unblock the page and block the ac-
cess to the mpi_montmul page. Whenever the TD gets to the next
multiplication, we again receive a VM exit where we unblock the
mpi_montmul page and block the access to the rest of the RSA im-
plementation. Through this mechanism, we are able to precisely
track when the code between two multiplications is executed. The
trace of an mpi_select and the logic provided in Listing 3, i.e.,
for the code executed between two mpi_montmul calls, recorded
with the help of the controlled channel is shown in Figure 5. We
use the same measurement approach as in Figure 4. The relatively
constant parts of the trace at the beginning and end of the trace are
part of the VM entry and VM exit, respectively. The two plateaus
with a drop in between them are caused by the mpi_select func-
tion, which performs a copy operation and takes up most of the
execution time between two mpi_montmul calls. This same pattern
can also be observed in Figure 4. Our target code from Figure 5 is
executed right before mpi_select and is most likely contained in
1 to 2 measurement points, due to its short length.
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Figure 6: Trace of uOPs executed. Each datapoint is the sumof
uOPs measured of the code between two mpi_montmul calls of
MbetTLS RSA averaged for 400 measurements. When a data
point falls below the threshold (dotted line), the TD executed
the short code between a square and a multiply, indicating a
1 (together with the previous measurement point, marked
in red). Otherwise, the code executed is between two squares
indicating a 0 (marked in green).

Figure 6 shows the average of 400 uOP traces collected from a
small part of an MbedTLS RSA encryption with the mpi_montmul
calls filtered out. Each measurement point in Figure 6 is the sum of
all uOPs executed for a call to mpi_select and the code in between
function calls shown in Listing 3. We collected these traces with
the controlled channel by blocking access to the mpi_montmul page
and the page containing the rest of the RSA implementation, always
unblocking the one the TD wants to execute and blocking the other
one. Due to this, we are able to synchronize our measurements
with the victim without requiring a change in the MbedTLS source
code. The lowest points in the trace (below the dotted line) are
the executions of the code between line 17 and line 22, shown in
Listing 3 (the code between a square and amultiply). This part of the
code only contains a call to mpi_select and no other logic leading
to the low number of uOPs executed. Such a low measurement
is a clear indication that the TD just processed a 1, as this code
part is only executed in this case. As processing a 1 results in two
multiplications, we can group the current and previous point into a
single operation. When a measurement of a high number of uOPs
executed (above the threshold) is not followed by a low number
of uOPs executed (below the threshold), this is an indication of
two square operations after each other. Therefore, we can conclude
that a 0 has been processed. We set the threshold at "0.2 ⋅ (𝑚𝑎𝑥 −
𝑚𝑖𝑛) +𝑚𝑖𝑛" where𝑚𝑖𝑛 is the lowest measurement point during
the encryption and𝑚𝑎𝑥 is the highest. This resulted in the most
stable results for our experiments.

4.3 Evaluation
Weevaluated our attack on an Intel Xeon Silver 4514YwithMbedTLS
3.5.2 and Ubuntu 24.04 running on both the host and the guest.
We followed the threat model outlined in Section 4.1. The vic-
tim TD is executing RSA-2048 encryptions using MbedTLS, while
the host is monitoring the guest on a sibling logical core using
UOPS_EXECUTED.CORE. Using 400 encryptions for each key extrac-
tion, we are able to recover the key with an average Levenshtein
distance of 0.92 over 25 key extractions with a standard error of
0.37, meaning on average 0.92 bits of the recovered key need to
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be changed to derive the correct key. We report the Levenshtein
instead of the hamming distance, as the processing of a 1 has dou-
ble the measurement points as the processing of a 0. Therefore,
when a 1 is misclassified as a 0, a second 0 (the second part of the
square and multiply operation) would automatically be detected,
consequently shifting the rest of the recovered key by 1 bit. This
shift would lead to a high hamming distance that does not properly
reflect the correct number of key bits recovered. Additionally, 72 %
of our attack runs were able to recover 100 % of the correct private
key, while the rest only had a small number of bit errors.

Similarly to our work, Gast et al. [22] performed a single trace
RSA key recovery on AMD SEV-SNP using branch-related perfor-
mance counters on the same logical core. In contrast, our attack
does not require single-stepping, which is actively mitigated on
Intel TDX, but can be performed on a normally running guest. We
use UOPS_EXECUTED.CORE for data leakage, which was not high-
lighted by them as a possible attack target. In contrast, they use
branch-related counters, which do not account for the other logical
core, making them unusable on TDX. Furthermore, we bypass the
TDX mitigation against performance counter-based attacks, which,
as Gast et al. [22] acknowledged, mitigates their attacks.

5 Any Gadget Spectre Attacks
In this section, we introduce Spectre attacks that have a much
broader range of suitable gadgets. We leverage that the perfor-
mance counter channel using UOPS_EXECUTED.CORE turns almost
every secret dependent operation, e.g., a conditional branch, into
a data leaking gadget when targeting a TD. We first explain how
Spectre attacks using the UOPS_EXECUTED.CORE channel work and
how they drastically increase the possible gadgets available. We
then demonstrate a KASLR break by combining Spectre with the
UOPS_EXECUTED.CORE performance counter channel and show how
it can be used in Spectre attacks to leak arbitrary memory from a
victim TD. For all attacks, we follow the threat model outlined in
Section 4.1.

5.1 Overview
Traditional Spectre attacks rely on specific secret-dependent opera-
tions to leak information. Kocher et al. [41] showed that memory
accesses are an effective means to encode arbitrary data into the
cache state during speculative execution. The attacker can then infer
the secret information through the cache state after the execution.
This greatly limits the number of gadgets available to an attacker.
Canella et al. [10] distinguished between 4 gadget types: prefetch,
compare, index, and execute gadgets. Most prior works rely on
index gadgets that perform two memory accesses: one to load the
secret and one to access an array based on the secret value [10].
However, such gadgets can be difficult to find in real-world soft-
ware [25]. Furthermore, branches are known targets for Spectre
attacks, and memory fences are a viable solution against these at-
tacks. While other works explored further covert channels beyond
the cache to exfiltrate data from transient execution [7, 70], they
still require the attacker to have control over the corresponding
covert channel and to find gadgets that encode the data accordingly
into this covert channel. Instead, the UOPS_EXECUTED.CORE per-
formance counter tracks the number of any uOPs executed, even

1 if (expression) {
2 //...
3 function_ptr(...);
4 //...
5 }

Listing 4: Example victim code, similar to Göktaş et al.
[25]. The attacker can control the function pointer during a
speculative execution, but never during actual execution.

speculatively. Consequently, we can use the UOPS_EXECUTED.CORE
performance counter as a covert channel receiver that is influ-
enced by any secret-dependent code execution. The change in uOP
throughput can be the result of a difference in themicroarchitectural
state, e.g., if cached memory is accessed in contrast to non-cached
memory, or simply different instructions are executed due to a
conditional branch, or any other microarchitectural difference.

For our Spectre attack, we focus on comparing gadgets, which
are abundant in the Linux kernel [10] and not considered in Spectre
mitigation efforts so far that focused on index gadgets [31]. Un-
like index gadgets that rely on a secret-dependent memory access,
compare gadgets only leak a single bit per speculative branch, i.e.,
branch taken or not taken. While the UOPS_EXECUTED.CORE chan-
nel is a very generic Spectre receiver, uOPs executed can also be a
noisy channel. Still, we believe the significantly broadened scope
of possible gadgets makes it an interesting channel for attackers.

For our experiments, we use the threat model described in Sec-
tion 4.1 and assume the existence of victim code similar to the one
shown in Listing 4, in line with prior work [25]. The attacker can
control the value of the function pointer that is being called in spec-
ulation and two arguments passed to it. However, importantly, the
attacker’s chosen function pointer is only executed in speculation,
never during actual execution. Furthermore, we note that this is
just one gadget that is realistic based on prior work [25], whereas
there is an abundance of further compare gadgets e.g., in the Linux
kernel that may also leak information [10].

5.2 KASLR Break
KASLR randomizes the virtual addresses of memory mapped in the
kernel space. Given that it has virtually no performance overhead,
it is widely deployed in modern operating systems. Practically, it is
often the first line of defense for an attacker to cross: The attacker
often needs to know the address of specific code or data in the
kernel, e.g., to leak data from this specific location, modify memory,
or reuse code for the attack [28, 39]. Guessing the KASLR offset is
often not feasible due to the severe consequences if the attacker
guesses wrong [20, 29], e.g., crashing the system.

To circumvent this challenge, prior work used various microar-
chitectural attacks [9, 28, 39, 42] and Spectre attacks [25, 38, 40, 52].
Similarly, we also use a Spectre attack to break KASLR on Intel
TDX, exploiting the UOPS_EXECUTED.CORE performance counter
channel. We target the kernel code region, which is mapped using
2MB pages above 0xffffffff80000000 on x86_64 Linux, with its
exact location randomized every boot. To leak the KASLR offset, we
exploit that UOPS_EXECUTED.CORE counts speculatively executed
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Figure 7: KASLR break using our Spectre attack with the
UOPS_EXECUTED.CORE channel. Each point is the median of 30
measurements on a single 2MB page starting at the start
of the Linux kernel code ASLR region (0xffffffff80000000
or page number 0 in the plot). Kernel code starts at page
number 216 (marked by the dashed line), which is clearly
visible through a spike in uOPs executed in the plot.

uOPs. To probe a virtual address of a victim TD, we let the TD
speculatively execute it using the gadget shown in Section 5.1. For
addresses with executable pages mapped, the processor can execute
the code on them speculatively, leading to an increased amount of
uOPs executed. Addresses without executable memorymapped lead
to a stall until the CPU determines that a misprediction occurred.

We performed measurements every 2MB (30 times per page)
starting at the beginning of the Linux kernel code ASLR range
(0xffffffff80000000), on our Intel Xeon Silver 4514Y system and
provide the results in Figure 7. The baseline is visible at∼8 200 uOPs,
which corresponds to no code page being mapped at these locations.
The first increase in uOPs is at page number 216, corresponding to
virtual address 0xffffffff9b000000. This aligns exactly with the
virtual address provided by /proc/kallsyms in the victim TD. We
can determine the correct KASLR offset in <2 seconds, requiring
30 measurements per page. This is the same performance range as
prior KASLR breaks [9, 25, 28, 38–40, 42, 52] albeit on Intel TDX.

5.3 Leaking Arbitrary TD Memory
Being able to leak arbitrary memory provides the host with all
secrets located inside the TD, such as encryption keys and other
sensitive information, breaking the confidentiality of TDX. To leak
memory with a Spectre attack based on the UOPS_EXECUTED.CORE
channel, we require nothing more than a gadget that varies the
number of uOPs executed depending on some input, e.g., any com-
pare and index gadgets. Such gadgets are common in the Linux
kernel [10], e.g., every time a flag in memory is checked, memory
locations are compared. Which gadgets exactly are exploitable de-
pends on the exact registers the attacker can control. For our attack
with the vulnerable code described in Section 5.1, we use a compare
gadget in the memchr function.

The first few instructions of the memchr in our Linux 6.8 kernel
are provided in Listing 5. Line 4 compares the byte stored at the
memory location held in the rdi register and the sil register,
which is the lowest significant byte of the rsi register on x86. This
comparison is followed by a conditional branch, which leads to
different code being executed depending on whether the branch is
taken. To leak specific values, we let the TD trigger our gadget for

1 add rdx, rdi
2 jmp 0xe
3 lea rax, [rdi + 1]
4 cmp byte [rdi], sil
5 je 0x13
6 mov rdi, rax
7 cmp rdi, rdx

Listing 5: Beginning of the disassembled Linux kernel memchr
function. The compare operation in line 4 is a Spectre
compare gadget leading to different instructions executed
and leaking the result of the comparison.
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Figure 8: Example of leaking bytes using memchr (Listing 5) as
a Spectre gadget. Each data point is the average of 10 execu-
tions for a byte guess. When the guessed byte and the target
byte are the same at byte 71 (dashed line), the compare is true,
leading to a jump and a lower number of uOPs executed due
to the different speculative execution path.

each possible value for sil. We repeat this 10 times and compute
the mean to eliminate noise.

The results of leaking a byte by using the memchr compare gadget
are shown in Figure 8. The average uOPs executed hover around
700 cycles for all byte guesses except for byte guess 72. This is the
result of the comparison in line 4 returning false for most byte
guesses, therefore, not taking the branch in line 5. With byte guess
72, the number of executed uOPs drops to ∼660 cycles. As this is
the correct value, the branch is taken during speculation, leading to
different instructions and, consequently, a different number of uOPs
being executed. With our attack, we are able to leak memory at a
rate of 52.6 bit/s (𝑛 = 800, 𝜎𝑥 = 0.03), with an error rate of 0.6 % (𝑛 =

800, 𝜎𝑥 = 0.02). This is slower than prior Spectre attacks [25, 41],
but still completely breaks the confidentiality of Intel TDX.

6 SSH Keystroke Timing Attack
Inter-keystroke timing attacks have been demonstrated from vari-
ous environments using different techniques [27, 55, 63, 65, 73, 86].
Song et al. [73] showed that attackers can detect keystrokes by ob-
serving the encrypted network traffic of an SSH session. All network
traffic to a TD is forwarded through the host, making it possible
for the host to observe the network traffic. To mitigate against
this attack, OpenSSH implements the ObscureKeystrokeTiming
feature [58], which hides the real keystroke packets by sending ad-
ditional fake interactive packets in short intervals. The fake packets



ASIA CCS ’26, June 01–05, 2026, Bangalore, India Fabian Rauscher, Hannes Weissteiner, and Daniel Gruss

1.2
1

1.2
1

1.2
1

1.2
1

1.2
1

1.2
1 ⋅10

14
1

1.5
⋅105

Current Time [cycles]

La
te
nc
y

[c
yc
le
s]

Figure 9: Latency between forwarding an SSH package to the
TD and the network response of real and fake OpenSSH key-
stroke packages. Real keystroke packages take more than
125 000 cycles (marked by a dashed line) to process on our sys-
tem, while fake keystrokes are processed significantly faster.
This makes keystrokes easily detectable for a malicious host.

cannot be distinguished from real keystroke packets by observing
the network traffic, and are treated as ping packets by the SSH
server. However, we can distinguish the fake and real packets by
observing the CVM through precise timing measurements.

6.1 Attack
Because the attacker controls the host, they can observe the net-
work traffic to and from the TD. Thus, the attacker knows exactly
when the TD receives an SSH packet and when it responds to it. To
distinguish fake and real packets, we use the precise timing between
when the network package is delivered and when the TD sends
a response. In OpenSSH 10.0p2, when ObscureKeystrokeTiming
is enabled, the client periodically (default: every 20ms) sends a
SSH2_MSG_PING packet. To an attacker, the encrypted network pack-
ages stemming from real keystrokes and SSH2_MSG_PING packets
are indistinguishable from each other. When the server receives a
SSH2_MSG_PING packet, it responds with a SSH2_MSG_PONG. This re-
sponse is sent immediately in the ssh_packet_read_poll_seqnr
function. In contrast, normal keystroke packets cause the func-
tion to return and look up the appropriate handler function in the
*ssh->dispatch table, which eventually forwards the keystroke
to the application. As both execution paths are not identical and re-
quire a different amount of work, it should be possible to distinguish
them through precise timing measurements.

To determine the processing time of a package, we measure the
time between the interrupt for the network packet being injected
into the TD and the MMIO TDcall by the guest to send the response
packet. In the TDX threat model, interrupts that the TD receives
are untrusted, as the host can decide when or even if an interrupt is
injected into the guest. We, therefore, do not inject any interrupts
into the guest in between the network packet being delivered and
the guest responding. As this includes the guest timer interrupts,
this essentially disables preemption for the TD, eliminating the
threat of unwanted threads being scheduled in the TD.

A precise timing trace of network packet response times of an
SSH connection with ObscureKeystrokeTiming enabled is shown
in Figure 9. Each data point is a single timing measurement done us-
ing the host’s timestamp counter (TSC). There is a clear baseline visi-
ble at∼75 000 cycles or 37.5 µs, which corresponds to SSH2_MSG_PING
used by the mitigation. A large number of spikes stand out from this
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(b) Real Keystroke

Figure 10: UOPS_EXECUTED.CORE traces of a fake keystroke (Fig-
ure 10a) and a real keystroke (Figure 10b) for OpenSSH. The
main difference between the two traces is highlighted in gray.
The fake keystroke trace has multiple spikes of high uOP
throughput, while the real keystroke trace lacks these spikes.

baseline. The spikes above ∼125 000 cycles (62.5 µs), marked with
a dotted vertical line, are keystroke packages that are being pro-
cessed. This small timing difference would be extremely difficult to
measure over a regular network, as it is small enough to completely
vanish through regular OS operation, such as scheduling. Despite
this, these timing differences can be easily and reliably measured
under the regular CVM threat model.

Performance Counter. While we focus our evaluation on precise
timings as they are currently enough to differentiate real keystrokes
from fake keystrokes, UOPS_EXECUTED.CORE can also be used to dis-
tinguish between the two packet types. A part of the uOP traces of
the processing for real keystrokes and fake keystrokes generated by
OpenSSH are shown in Figure 10. Despite two traces having multi-
ple similar features, such as a plateau between measurement points
80 and 100, as well as a slight increase in uOPs executed around
measurement point 200, there aremultiple differences, making them
reliably distinguishable. One of these differences is highlighted in
gray in Figure 10a and Figure 10b. For fake keystrokes, there are
large spikes in uOPs executed in this area, which are missing for real
keystrokes. As this is a very distinct difference, performing inter-
keystroke timing attacks on OpenSSH would be possible through
UOPS_EXECUTED.CORE if the OpenSSH team mitigates the currently
existing timing side channel.

6.2 Evaluation
Weperformed our attack on a TD running OpenSSH version 10.0p2
on Ubuntu 24.04, following the threat model outlined in Section 4.1.
We enabled ObscureKeystrokeTiming with the default settings,
resulting in fake packets being sent approximately every 20ms.
Our experiments were performed with one of the authors typing at
their regular speed inside of a text file edited using VIM inside of
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the TD through an SSH connection. Overall, 418 keys were typed.
Of the 418 keys, all were detected correctly with 3 false positives.
This results in an 𝐹1 score of 99.6 %, making it an extremely reliable
attack. The high 𝐹1 stems from the high amount of control the host
has over the environment in this threat model, allowing for the
elimination of noise sources such as interrupts and scheduling.

While correctly detecting a majority of the keystrokes is impor-
tant for an inter-keystroke timing attack, a low variation in the
detection latency is vital to recover words from the recorded infor-
mation. For our experiment, we measured an average latency of
60ms between the key being pressed and the interrupt for the key
being injected into the guest. The standard deviation of the latencies
is 5.64ms. While the latency itself seems high, it itself is irrelevant
for an inter-keystroke timing attack. As long as all packages have a
similar delay, the timings of the key presses relative to each other
(which is holding the information) remain the same, making the
standard deviation the relevant metric for this kind of attack. Our
standard deviation of 5.64ms is significantly lower than the average
inter-keystroke interval of 120ms for fast typists [19] and similar to
existing inter-keystroke timing attacks [62, 68], making it a viable
channel for this attack.

7 Discussion & Related Work
In this section, we discuss related work, as well as possible miti-
gations for our attacks. We first discuss the performance counter-
based attacks and finish with the attack on the OpenSSH keystroke
detection mitigation.

7.1 Performance Counter Attacks
Unlike the mitigations against single-stepping and performance-
counter-based attacks on the same logical core that Intel employs,
our attacks can not be mitigated through a change in the TDX
module. The TDX module can not hinder sibling logical cores from
using certain performance counters. The best way to mitigate this
issue is to not count performance counter events of sibling logical
cores across TD boundaries. While we do not believe that this can
be done on existing hardware, it is the best long-term solution.

For existing hardware, the best option is to disable hyperthread-
ing. With hyperthreading disabled, there is no sibling logical core
available to collect data from performance counters that monitor
the whole core. Whether hyperthreading is enabled is attestable,
making this enforceable by the TD and very easy to implement. The
main disadvantage of this mitigation is the loss in performance.

Alternatively, the TDX module could enforce that all logical
cores of a physical core have to be either inside of one TD or in the
host. With both logical cores inside of the same TD, the host can
not monitor the performance counters. To enforce this, the TDX
module could block when entering a TD until both logical cores are
ready to enter it. For VM exits, whenever one logical core performs
a VM exit, the TDX module could send an IPI to the other logical
core, forcing a VM exit. This would lead to performance loss due to
unnecessary VM exits and VM entries blocking until both cores are
ready, but this loss in performance should be significantly smaller
than disabling hyperthreading.

To mitigate the impact of UOPS_EXECUTED.CORE on Spectre at-
tacks, compilers can insert fences between compares and their

subsequent branch [31]. We note that this is not the same as simply
disabling branch prediction. Since this would lead to a significant
loss in performance [10], other mitigation options may be more de-
sirable. Additionally, this approach would only mitigate the use of
UOPS_EXECUTED.CORE in Spectre attacks and not any other attack
vectors stemming from the discussed performance counters. Our
new side channel is most relevant when using a gadget that, itself,
does not lead to a branch prediction, but instead is executed during
speculation. It is necessary for our side channel that the branch is
correctly evaluated, as it leaks the outcome of the branch.

Closest to our work is CounterSEVeillance by Gast et al. [22].
They use performance counters on the same logical core to attack
a TOTP implementation, the MbedTLS RSA implementation, and
perform a divide-and-surrender-style attack on a HQC-KEM imple-
mentation running in an AMD SEV-SNP CVM. To perform these
attacks, they mainly take advantage of performance counters track-
ing branches. While CounterSEVeillance [22] and our attacks are
similar on the surface, there are key differences: First, the attack
style of CounterSEVeillance monitors the performance counters on
the same logical core and assumes that performance-counter-based
attacks are mitigated if performance counters are context switched
when entering a TEE, explicitly mentioning that Intel TDX imple-
ments this mitigation. Our attacks take advantage of a performance
counter that can monitor the victim from the sibling logical core,
bypassing Intel’s current defense. Second, in addition to traditional
attacks with performance counters, we explore Spectre-type attacks
using the information gained by performance counters, allowing
for the use of a wide range of potential new gadgets. Third, we do
not rely on single-stepping for any of our attacks, instead leverag-
ing the highly detailed information UOPS_EXECUTED.CORE provides
us to leak secret information. Lastly, we show a completely novel
attack that bypasses the recently introduced mitigation against
inter-keystroke timing attacks in OpenSSH.

Lou et al. [51] also attack AMD SEV-SNP with performance
counters and perform website fingerprinting and keystroke detec-
tion. The performance counters are monitored on the same logical
core as the victim, which is not possible on Intel TDX. Similar to
Gast et al. [22], Lou et al. [51] mention that Intel TDX already pro-
tects against performance counter-based attacks and recommend a
similar mitigation for AMD SEV-SNP. We show that this defense
is insufficient and still makes leakage through some performance
counters possible.

Cho et al. [15] and Li et al. [45] use performance counters to
detect malicious applications, which could also be applied to TEEs,
making a case for providing some performance counter informa-
tion available to the host. Weissteiner et al. [81] try to strike a
balance between confidentiality and thread detection by decorrelat-
ing reported performance counter values from the actual hardware
events in TEE environments, allowing performance counters to be
enabled while protecting against fine-grained information leakage.
However, this mitigation does not protect against information leak-
age through shared performance counters, as it only applies the
decorrelation when context switching from the host to the TEE.
Thus, the performance counters from a sibling logical core are not
decorrelated and still leak information.

Mandal et al. [53] use performance counters to monitor the host
application managing the TD and detect contention effects through
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them. By monitoring performance counters such as instructions
executed, L1 dcache misses, and branch misses, they can deter-
mine whether the throughput on the sibling logical core of the
TD changes due to contention. Their attack does not directly leak
information from the TD through the performance counters, as all
performance counters listed only monitor the current logical core
and are context switched whenever entering and exiting a TD. Due
to the limited information, Mandal et al. [53] only perform applica-
tion fingerprinting. In contrast, our work found a small subset of
performance counters that allow for direct monitoring of the TD
workload, as they capture data for the whole physical core, even
when one of the two logical cores is currently running a TD. This
allows us to perform much more fine-grained attacks, such as an
RSA private key recovery and Spectre-type attacks.

7.2 OpenSSH
To mitigate the OpenSSH inter-keystroke timing attack, the most
effective approach would be to implement one processing path for
real and fake keystroke packages to avoid a deviation in timing.
Due to the difference in how real keystrokes have to be processed,
e.g., , there might be a response package with new information that
is displayed, but this might not be fully possible. An approxima-
tion of this would be to delay the fake keystroke responses of the
mitigation into a similar timing range as the last real keystrokes
being responded to. The fake keystrokes do not have to be able
to mimic the timings of real keystrokes perfectly. Inter-keystroke
timing attacks rely on precise timing differences between individual
keystrokes. Therefore, as long as large parts of the keystrokes can
not be differentiated from fake keystrokes, the timing differences
are not valuable for the recovery of the typed words. Another pos-
sible angle to defend against these types of attacks would be to
delay keystrokes from being sent for a random amount of time. If
the random delay range is large enough, e.g., in the range of a few
100ms, the inter-keystroke timings are also no longer useful for
recovering words. This approach has the disadvantage that it does
not hide the number of characters typed, but only obfuscates the
timings between them. Additionally, this random delay can make
the SSH connection less responsive, which might discourage some
users from activating this mitigation.

Giavridis [23] discovered that the OpenSSH inter-keystroke tim-
ing defense in version 9.7 can be easily bypassed by measuring
the response times of packages. Keystroke packages take 3 times
longer (60ms) to process than fake keystrokes (20ms). This attack
was mitigated starting OpenSSH 9.8p1. Despite the mitigation,
we show that there is still a significant timing difference between
response times for SSH packages, which can easily be exploited in a
CVM scenario running the most recent OpenSSH version (10.0p2).
Lipp et al. [47] leaked keystrokes from sandboxed JavaScript with
an identification rate of 81.75%. Rauscher et al. [62] measure the
timings of inter-processor interrupts to detect other interrupts and
performed an inter-keystroke timing attack with a standard devia-
tion of 6.15ms and an 𝐹1 score of 97.9 %. Schwarz et al. [68] propose
generating random keystrokes to mitigate inter-keystroke timing
attacks, similar to the OpenSSH mitigation.

8 Conclusion
Intel’s recent CVM extension, Intel TDX, actively mitigates per-
formance counter attacks by context switching relevant registers.
Despite these mitigations, we uncovered a fatal flaw in this miti-
gation, as it does not account for leakage through counters that
monitor the whole physical core. We analyzed the available per-
formance counters on our recent Intel CPU and found 8 that al-
low for information leakage from the sibling logical core, even
when the other core is inside of a TD. We uncovered one particular
counter, UOPS_EXECUTED.CORE, that provides information on uOPs
executed, which can be exploited to leak sensitive information on
the execution flow inside of a TD. With UOPS_EXECUTED.CORE, we
attack the MbedTLS RSA-2048 implementation running inside of
a TD and leak the full private key with an average Levenshtein
distance of only 0.92 bits. While this attack already shows how
dangerous this exposed information can be, we further abuse that
UOPS_EXECUTED.CORE does not only count uOPs of instructions
that are committed, but also of speculatively executed instructions.
This enables the use of a wide range of new gadgets for Spectre
attacks by relying on uOPs executed during speculation instead
of other side effects, such as memory accesses. We demonstrate
how dangerous this can be by using the Linux kernel’s memchr
implementation to leak arbitrary TD memory at a rate of 52.6 bit/s
and by breaking KASLR in less than 2 s. In addition to performance
counter-based attacks, we discovered that the novel inter-keystroke
timing defense of OpenSSH is insufficient for a CVM scenario, allow-
ing us to detect real keystrokes with an 𝐹1 score of 99.6 %, despite
the active mitigation. We conclude that the current mitigations
against performance counter attacks in Intel TDX are incomplete
and require further refinement to protect against this threat.
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