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Abstract
Security measures and patches typically come with a performance
cost. While performance is a common metric to assess the prac-
ticality of security measures and patches, energy cost is typically
ignored. However, it is unclear to what extent performance and
energy costs of security correlate and to what extent they diverge.

In this paper, we present the first systematic analysis of the en-
ergy costs of CVE fixes and mitigations. We use the Linux kernel
as a case study. We perform energy-performance delta benchmarks
using Intel RAPL on the two software versions or configurations
under test on our i7-6700K. We automatically attribute CVEs from
an 8-year time frame to patch sets, automatically compile the corre-
sponding source code versions, i.e., pre-patch and post-patch, and
automatically benchmark performance and energy consumption.
Furthermore, we perform an evaluation of all kernel mitigations.
We show that energy and performance costs diverge very clearly
in some cases. One of these cases is the retbleed IBPB mitigation,
with runtime increases of 0.4% and energy consumption decreases
of 7.1% for the apache Phoronix benchmark. While not a fully
indicative experiment, our work underscores the need for future se-
curity research to evaluate energy cost in addition to performance.

CCS Concepts
• Hardware → Power estimation and optimization; • Security
and privacy→ Operating systems security.

Keywords
CPU vulnerabilities, energy overhead, Meltdown, Spectre, CVE

ACM Reference Format:
Fabian Rauscher, Benedict Herzog, Timo Hönig, and Daniel Gruss. 2025.
Systematic Analysis of Kernel Security Performance and Energy Costs. In
ACM Asia Conference on Computer and Communications Security (ASIA CCS
’25), August 25–29, 2025, Hanoi, Vietnam.ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3708821.3736197

This work is licensed under a Creative Commons Attribution 4.0 International License.
ASIA CCS ’25, Hanoi, Vietnam
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1410-8/25/08
https://doi.org/10.1145/3708821.3736197

1 Introduction
System security and efficiency are often seen in conflict. In partic-
ular, security measures and patches usually reduce performance.
Security mechanisms and patches can be found on any layer of
the system, i.e., hardware, operating system, and application level.
The standard metric to assess the cost of security mechanisms is
measuring performance overhead over benchmarks. Well-known
examples of the overheads of security patches include the patch
against Meltdown [20, 44], with −5% to 800% overhead [19], and
the mitigations for various Spectre attack variants, also with a wide
range of reported overheads [7]. Some of these are implemented
on an application level (e.g., site isolation [57]), on the system level
(e.g., KPTI [19]), or on the hardware level (e.g., eIBRS [7]).

Performance overheads of new security mechanisms and mitiga-
tions are studied extensively across most corresponding publica-
tions. However, performance only indirectly covers energy over-
heads. Herzog et al. [24] found that for KPTI [19], some benchmarks
show different overheads for energy than for performance. The
reason is that the energy consumption is influenced significantly by
the runtime and the performance mode the processor runs in. For
instance, earlier stalling of the out-of-order execution can reduce
energy consumption without affecting performance significantly.
Conversely, adding memory traffic or on-core activity can increase
energy consumption significantly without a significant effect on
the performance. This lack of information about the energy over-
head of security mechanisms, however, is in stark contrast to the
importance of energy efficiency, especially in data centers [17].

A series of works on software energy costs [8, 10, 54], mostly
focused on user-level software, consistently showed that software
performance and energy costs are only weakly correlated and per-
formance (i.e., execution time) cannot be used to estimate energy
costs accurately. Very few works analyzed the energy costs of se-
curity mechanisms besides Herzog et al. [24], e.g., Siavvas et al.
[60] analyzed the costs of application-level security checks. This
is a stark contrast across scientific communities, as our analysis of
1 257 publications from 2023 from 7 top-tier systems and system
security conferences reveals. In some systems conferences, more
focused on novel functionality and performance gains than secu-
rity, about 70% of the published papers mention energy and power
consumption. However, only ∼1% of published papers in top-tier
security conferences provide energy and power consumption. This
is particularly concerning as there is a clear relation between power
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consumption and security, e.g., Rowhammer faults related to newer
DRAM operating with lower power [35] and undervolting-related
faults [30, 51]. Given frequent newmitigations and the performance
of some recent CPUs being degraded to that of 3 years older prede-
cessors [25], i.e., about 15 % slower, we also have to ask:
What are the energy costs of system security? How far do energy and
performance costs of system security diverge?

In this paper, we present a systematic analysis of the energy costs
of CVE fixes and mitigations in the Linux kernel. The idea behind
our systematic analysis is a differential energy measurement using
Intel RAPL, a processor interface accurate enough to mount power
analysis attacks [43]. By benchmarking the two corner cases of the
software under test, i.e., either the source code commits pre-patch
and post-patch or the mitigation enabled and disabled, we can deter-
mine precise performance and energy overheads. For this purpose,
our analysis framework automatically attributes CVEs to patch sets
and locates them in the source-code versioning repository.

We evaluate kernel CVE fixes in a case study starting from Linux
4.0 over an 8-year time frame on an i7-6700K. From these, we were
able to automatically identify 1 616 CVEs that we can automati-
cally map to patch sets present in the source-code repository. We
automatically compile the Linux kernel pre- and post-patch and
benchmark it using the Stress-NG and Phoronix benchmark suits.
We automatically analyze all fixes through automatic debugging,
allowing us to filter for fixes that affect code executed by our bench-
marks. We then collected performance and energy data for the
108 CVEs, for which we determined through this debugging that
they affect our system. This reduces the number of CVEs for which
a large amount of benchmark runs are necessary for statistically
significant results while still analyzing all CVEs.

Overall, we obtain energy and performance data for 108 Linux
CVEs that affect our system configuration and benchmarks. In
this case study, we observe that the energy and performance costs
are largely correlated with a few exceptions. We discuss these ex-
ceptions, as well as corner cases that reach the limitations of our
approach. This work is not a cost-benefit analysis. Instead, we
introduce a framework for automatically filtering through a large
number of security patches and analyzing patches that potentially
have large effects on energy consumption or runtime. Additionally,
we analyze the correlation of energy and runtime overhead.

Beyond the automated quantitative analysis, we also qualita-
tively evaluate the performance and energy overheads of mitiga-
tions in the Linux kernel. While energy and performance costs
are still correlated, we can see more clear corner cases here with
clear energy overheads while the performance is largely unchanged
and vice versa. This shows that energy cost and performance cost
should both be evaluated in future security works.
Contributions. We make the following main contributions:

(1) We automatically run combined energy-performance bench-
marks for security patches related to CVEs on our i7-6700K.

(2) Based on our approach, we provide the first large-scale sys-
tematic analysis of energy and performance costs of security
patches and mitigations in the Linux kernel.

(3) We perform a large-scale analysis of energy and performance
costs of kernel patches over an 8-year time frame, revealing
significant outliers and divergences.

(4) We perform 14 qualitative case studies of energy and perfor-
mance costs and use performance counters to reason why
energy and performance counters diverge significantly.

Outline. In Section 2, we provide background. In Section 3, we
describe our automated performance-energy benchmarking of secu-
rity patches andmitigations. In Section 4, we present our large-scale
analysis of Linux patches over an 8-year time frame. In Section 5,
we present our analysis of Linux mitigations. We discuss limitations
in Section 6 and related work in Section 7. We conclude in Section 8.
Ethics Considerations. There are no new vulnerabilities discov-
ered or published in this work. We analyzed public CVE patches
and mitigations present in the Linux kernel.

2 Background
In this section, we provide background on OS kernel security, the
performance overheads of security measures, and CPU energy mea-
surement interfaces for benchmarking and side-channel analysis.

2.1 Kernel Security
Since modern systems run code from arbitrary sources, container-
ization and process isolation using operating system kernel support
have become key elements of system security. The operating sys-
tem kernel is typically considered part of the trusted computing
base (TCB). For decades, the academic community has explored
pathways to minimize a system’s TCB, e.g., by moving components
out of the kernel or only allowing verified code to run in the ker-
nel [11, 48], or entirely switching to a micro-kernel approach [36].

The most widely used open-source kernel today is the Linux ker-
nel, which is also integrated into the Android operating system [1].
Some parts of the kernel source code are continuously improved and
extended [23], especially drivers or modules. Furthermore, there
are more developers involved in driver or module code, potentially
increasing the risk of bugs in these parts of the kernel [61]. Given
the large code base of the Linux kernel, it is natural that numerous
bugs are introduced and discovered [59]. Furthermore, as the Linux
kernel is part of the TCB, any exploitable bug must be considered a
security issue that requires a patch [62]. Prior work studied Linux
kernel vulnerabilities and found typical C program bug classes to
be most prevalent, e.g., buffer errors and invalid dereferences [59].
Consequently, there is a constant stream of security patches for the
kernel [32]. Not patching a security issue in the kernel (in time) is a
significant security risk [9]. These severe consequences imply that
patching security issues is of utmost importance, and the attached
costs are an unavoidable side effect.

2.2 Performance Overheads of Security
The performance costs of security patches and security mechanisms
are well-studied. Kernel developers are required to keep the per-
formance costs for new security mechanisms to a minimum and
justify any overheads [4, 13, 14]. Consequently, the performance
of the core functionality of Linux remains consistently fast and
does not continuously slow down due to new functionality [58]. An
exception to this rule can be mitigations for known vulnerabilities
to ensure the integrity and security of the operating system. Never-
theless, such mitigations are continuously analyzed and improved
to further reduce the overhead where possible [3, 5, 24, 26, 46]. This



Systematic Analysis of Kernel Security
Performance and Energy Costs ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

applies, in particular, to hardware vulnerabilities, where the vulner-
ability cannot be remedied directly, but software mitigations must
remain permanently active. Besides analyzing the performance
costs, additional studies analyze the timeliness and effectiveness of
security patches, e.g., in a large study consisting of 4 000 security
patches [42]. The energy overhead of security patches, however, has
received only little attention so far, with only few works analyzing
the overhead of specific mitigations [24, 46].

As a consequence of these considerable performance overheads,
the Linux kernel offers many boot-time configuration options to
enable or disable specific security measures. Hence, system admin-
istrators can select which measures are required in their specific
setup. However, also as a consequence of the performance over-
heads, users are disabling mitigations regardless of their individual
exposure to attacks to restore the performance without the patches
or mitigations [12, 41]. Even though mitigations can even improve
the performance for specific workloads [12]. This already shows
that users do not necessarily share the view of the scientific commu-
nity that the mitigation of security issues is of utmost importance.

2.3 CPU Energy Measurement Interfaces
Both Intel and AMD introduced a mechanism for controlling ther-
mal and power constraints from software [18]. On Intel processors,
the Running Average Power Limit (RAPL) mechanism allows soft-
ware to adjust the CPU frequency and voltage, as well as the power
limits. RAPL provides different energy domains for different parts
of the processor [21]. AMD provides an energy measurement in-
terface that is essentially compatible with RAPL [2]. The accuracy
of energy measurements is typically on the scale of milliseconds
or microseconds. Because of its accuracy and precision, RAPL has
been used for benchmarking works in the past [24, 34]. RAPL can
be accessed through a set of model-specific registers (MSRs), which
are available to the kernel. To make them accessible to regular
software, Linux provides a driver that allows user-space software
to directly read the information provided by RAPL [53]. These in-
tegrated energy measurement interfaces significantly lower the
barrier for energy measurements compared to measurements with
external devices. In particular, they are an enabler for systematic
analyses, such as the one presented in this work, as well as for
energy overhead measurements for new security mechanisms.

3 Methodology
In this section, we discuss our measurement methodology and test
setup. Furthermore, we propose a prefiltering method allowing us
to evaluate a large number of CVEs in a short amount of time.

3.1 Measurement Methodology
All our measurements are conducted on an i7-6700K CPU. The
benchmarks are executed on an isolated core inside a virtual ma-
chine running under KVM with an unmodified Debian 11 using
the ext4 filesystem on an Ubuntu 20.04 LTS. An overview of our
setup is provided in Figure 1. We run the tested kernels inside a
virtual machine similar to the way they would be used in the cloud.
All Linux kernel versions are compiled with the default KVM con-
figuration. The energy measurements are done on the host using

Figure 1: Overview of our analysis framework and exper-
imental setup. The kernels are first compiled. The tested
kernel is launched through KVM on its own core and exe-
cutes the benchmarks. The measurement code runs on its
own core, tracking energy consumption through RAPL and
the runtime of each benchmark. Once a sufficient number of
measurements are completed, the results are evaluated.

Intel RAPL. We use the PKG RAPL domain, which provides the en-
ergy consumption of the whole CPU. As RAPL does not distinguish
between code executed inside a VM and code on the host, energy
measurements include the power consumption of the benchmarks
running in the VM. We sample the RAPL model-specific register
(MSR) in 1ms intervals throughout all benchmark executions. For
runtime measurements, we use a millisecond-accurate timer.

Our setup offers fast drop-in replacement of the kernel without
requiring a system restart, adapting the measurement code for dif-
ferent kernel versions, relying on the stability of the tested kernels
and driver availability in the case of older kernels. This setup allows
us to test a wide range of kernel versions and CVE fixes in a short
amount of time. We evaluate all Linux CVEs for which an explicit
fix commit exists from Linux 4.0 to Linux 6.2, covering an 8 year
range of Linux releases. We further evaluate existing command
line controlled mitigations in Linux 6.2 and their configurations. To
avoid confusion, we refer to mitigations or fixes to software bugs
in the Linux kernel as fixes or patches and mitigations to hard-
ware vulnerabilities, which can be enabled or disabled at boot time
as mitigations. To find the commits, we use a publicly available
database that logs Linux CVEs and fixes [47].

For CVEs, our baseline is the kernel version before the commit
marked as the fix is applied. We compare this baseline with the
kernel version after the fix is applied. In our evaluated 8 year time
period, there are 1 616 CVEs according to [47]. We only evaluate
CVEs where an explicit fix commit exists, leaving us with 1 604
CVEs. Of the 1 604 CVEs, 46 did not compile or boot on our system,
resulting in 1 545 testable CVEs. Build problems for some commits
are to be expected as we do not build Linux releases but specific
commits. We run multiple benchmarks to evaluate the impact of
CVE fixes on performance and energy consumption. Our bench-
mark set consists of 14 benchmarks from the Stress-NG suite and 5
benchmarks of the Phoronix Test Suite. The Stress-NG suite bench-
marks used are icache, fork, pthread, context, pipe, io, sock,
udp, futex, aio, switch, sctp, signal, and cpu. The Phoronix
Test Suite benchmarks are network-loopback, mutex, osbench,
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Table 1: Discussions and Evaluations of Performance- and
Energy-related Metrics in Top Publications.

Papers discussing ISC
A

MI
CR
O
AS
PL
OS

AC
M
CC
S

IEE
E S
&P

ND
SS
US
EN
IX
Sec
.

Overall 151 229 195 69 101 90 422

Performance 55 41 38 20 33 18 84
Energy 37 20 13 47 68 7 30

Perf. & Energy mentioned 25 8 10 17 29 5 19
Performance & Energy 13 5 8 15 21 2 9

Energy measured,
estimated, or discussed 8 2 3 11 16 1 3

apache, and pmbench. We chose our benchmarks to cover a wide
range of use cases while keeping the number of benchmarks low.
While more benchmarks would be beneficial, it would result in
significantly longer measurement times, as many kernels have to
be tested with each one. The low number of benchmarks allows
us to test a wide range of Linux versions in a reasonable amount
of time. We further prefilter benchmarks for each CVE to only
test benchmarks that change code executed during a benchmark
run. Furthermore, we do not explicitly enable or disable any kernel
mitigations when testing CVE fixes.

For Linux kernel mitigations, we run all benchmarks with all
available command line options for each mitigation on Linux 6.2.
Our baseline for the mitigation measurements is the kernel with
the tested mitigation disabled. At the time of testing the available
mitigations according to the official documentation for our x86 sys-
tem are spectre_v2, spectre_v1, spec_store_bypass_disable,
pti, l1tf, mds, tsx_async_abort, retbleed, mmio_stale_data,
l1d_flush, and kvm.nx_huge_pages [33]. We do not apply pre-
filtering for the command line options, as the number of mitigations
that can be enabled this way is manageable.

3.2 Methodologies across Communities
To understand the current situation of energy measurements in the
security community, we performed a comparative study with the
systems community. We want to determine to which extent energy
costs are discussed in systems and system security publications and
identify methodological discrepancies between the communities.

We selected the top system security venues (ACM CCS, IEEE
S&P, NDSS, and USENIX Security) as well as the top systems venues
(ASPLOS, ISCA, and MICRO). We used a semi-automated approach
to retrieve the publications for all 7 conferences in 2023 from the
publisher websites. While this worked perfectly for some confer-
ences, one can notice that the number of publications is just slightly
below the number of accepted papers for some conferences due
to missing publications1, or repeatedly failed download attempts
from the publisher. Thus, overall, we base our evaluation on 1 257
unique papers published at top systems and system security venues.
Most publications are in the same length range, given the tight and
similar page limits. Despite the differences in their respective topics,

1Instead of the paper PDF, the publisher provided a PDF stating that the corresponding
paper is not available.

both software and hardware mechanisms have been published in
each of these 7 conferences. In systems conferences, both publica-
tions focused on novel functionality and performance gains, and
publications proposing new security mechanisms can be found.

By-hand evaluating all 1 257 papers is a prohibitive amount of
work, even when involving multiple experts for the evaluation.
Therefore, we pre-filtered the papers based on an automated key-
word search. To identify papers discussing performance-related as-
pects, we used the expression (performance|run.?time|execution.time|

CPU.time).(cost|consumption|overhead|increase). To identify papers dis-
cussing energy-related aspects, we used the expression (energy|power

)(.consumption)?.(cost|consumption|overhead|increase). It is clear that
this approach may have missed some papers, but based on our
manual checks, this filter is representative of the entire set of 1 257
papers. To filter papers discussing performance-related aspects fur-
ther, we used the expression (energy|power.consumption) and refined
it to also use the expression for energy-related aspects above. All
resulting publications were manually evaluated by an expert.

As shown in Table 1, our automated keyword analysis yields
that 152 out of 321 systems publications from 2023 mention energy
efficiency or costs or power consumption. For ASPLOS, this number
is around 25%, whereas for ISCA andMICRO, it is closer to 70%.We
can also see that for those papers that mention performance costs or
overheads, more than 85% of ISCA andMICRO papers also mention
energy, and about 45% of ASPLOS papers. For the system security
venues, the numbers look more devastating: Only 63 out of 846
system security publications in our evaluation mention energy or
power consumption, corresponding to only 7%. This is a significant
discrepancy to the systems community.

This difference does not exist to the same level for performance
metrics, where all conferences are in the range of 18% to 36%. This
discrepancy can be explained by attack papers that do not present
a mitigation in detail and, hence, also no performance evaluation.

To narrow down the set for manual analysis by experts further,
we combined the two initial filters, resulting in a selection of 73
publications that possibly discuss performance- and energy-related
aspects. We manually evaluated these 73 publications. The manual
analysis should identify how many of these 73 publications provide
energy costs through measurements, estimations, or at least a dis-
cussion of energy costs in a wider sense. The result of the manual
analysis shows that only 44 of the 73 publications (1 257 overall)
our search identified actually discuss energy costs. For systems
conferences, an overall number of 35 out of 49 publications (321
overall) were identified to discuss energy costs, whereas, for system
security, it is only 9 out of 24 (936 overall). However, taking into
account that the remaining publications already did not match the
keywords in our automated search, our manual analysis provides
estimates for the overall ratio of publications that discuss energy
additionally to performance: For system security, we can estimate
the ratio to ≈1% that discuss energy and power consumption; for
systems publications, we can estimate the ratio to ≈11%.

This discrepancy indicates methodological differences that need
to be addressed. During our manual analysis, we discovered numer-
ous works that could have provided energy costs or estimates, for
instance, by using CPU energy power measurements (e.g., using
RAPL and equivalent features [2, 18]), or software-based estimates
(e.g., using CACTI [50]).
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Figure 2: Statistics on how many CVEs exist for the tested
time frame, how they were processed in our benchmarking
approach, and which led to statistically significant results.

4 Analysis of 8 Years of Kernel CVEs
In this section, we analyze the measurement results of our bench-
marks on 1 616 CVEs, which were introduced to the Linux kernel
between Linux 4.0 and Linux 6.2.

4.1 Benchmark Filtering
A high-level overview of our filtering process is provided in Figure 2.
For our evaluation period of Linux 4.0 to Linux 6.2, we found 1 616
CVEs. For 12 of the CVEs, there is no explicit commit marked as a
fix [47]. For further 46 CVEs, the unpatched or the patched kernel
does not compile. Of the remaining 1 558CVEs, 13 had at least one
kernel that did not boot. This results in 1 545 testable CVEs.

With 1 545 CVEs, a complete run with all benchmarks for each
CVE would take over two weeks on our test system. For a high
enough sample size, our systemwould have to run for at least a year.
Such a long runtime is not practical. As we do not want to reduce
the number of CVEs or benchmarks, we prefilter the benchmarks
for each CVE. While there are 1 545 testable CVEs, only a fraction
affect the code that our benchmarks run. These CVEs might only
affect Android, ChromeOS, other architectures, or drivers of devices
and file systems not present in our test system. By filtering CVEs
and benchmarks for CVEs that affect code that is not executed, we
significantly reduce the number of overall benchmark runs.

For filtering, we leverage automatic debugging in combination
with the ability to debug kernels in QEMU. First, we find all code
lines changed by the CVE patch. Second, we set a breakpoint for
each changed line. Third, we execute a benchmark and log each
breakpoint hit. We use the resulting information to remove CVEs
that do not affect any benchmarks and only run benchmarks that
execute changed code. Furthermore, we do not execute benchmarks
for CVEs if breakpoints were only hit less than 100 times, as the
changes are not often executed. A low number of breakpoint hits
can be the result of the changed code executed once during setup,
which will only marginally impact the benchmark. By removing
all CVEs that do not affect code executed by our benchmarks, we
reduce the 1 545 testable CVEs to 108 CVEs. This number can be
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Figure 3: Energy overhead and runtime overhead scatter plot
of benchmark runs from 108 Linux kernel CVE fixes.

further increased through more benchmarks and testing on differ-
ent architectures and hardware configurations. The prefiltering is
automated and does not require manual intervention.

4.2 High-Level Analysis
Figure 3 provides an overview of the benchmark results for all 108
tested CVEs. Each dot in the scatter plot corresponds to the result
of a single benchmark run. Each benchmark was executed 92 times,
and the results are averaged. Black lines separate the four quadrants,
and the expected runtime-to-energy correlation of 1:1 is shown as
a dotted line. Of the 108 CVEs, 46 have no benchmark runs where
either the runtime or energy change show statistical significance
according to the Mann-Whitney-U-Test (𝑝 ≥ 5%). This means that
62 out of the 108 measured CVE fixes have a measurable impact on
our benchmark suite’s runtime or energy consumption. 42.2% of
benchmark runs are in the first quadrant, meaning positive runtime
and energy overhead. 53.0% of benchmark runs are in the third
quadrant, meaning negative runtime and energy overhead. Results
in the first and third quadrants follow the assumption that energy
overhead can be roughly estimated by runtime overhead. 2.4% of
benchmark runs fall into the fourth quadrant, meaning positive
runtime overhead and negative energy overhead. For these CVEs,
the corresponding benchmarks took longer to execute but did so in
an overall more energy-efficient way than without the patch. 2.4%
of benchmark runs fall into the second quadrant, meaning negative
runtime overhead and positive energy overhead. Therefore, energy
and runtime are largely correlated. Contrary to what is expected,
there is a large number of patches that improve energy consumption
and runtime. This can be the result of code simplification but also
more complex changes, such as fewer branch predictions and more
energy-efficient stalls instead of mispredictions.

47.6% of benchmark runs with statistically significant results
have either a runtime or energy overhead change that is statistically
significant, while the corresponding other metric is statistically
insignificant. This means that the patch affected either energy con-
sumption or runtime overhead, but not both. Following the assump-
tion that energy and runtime follow a 1:1 relationship, faster code
should be more energy-efficient. While energy and runtime seem
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to roughly correlate (Figure 3), the correlation is far from perfect,
with the measured overheads scattered around the expected corre-
lation. For optimizations of fixes, typically, only runtime overhead
is considered, while energy overhead is ignored. This one-sided
optimization results in an energy overhead that can vary wildly
from the runtime overhead. The Pearson correlation coefficient of
energy and runtime overhead is 0.84 with a coefficient of determina-
tion (𝑟2) of 0.71, where 1 would be a perfect linear correlation. Our
measurements show that runtime is a rough estimate for energy
consumption, but it is not precise and can vary significantly.

For all CVEs that we further analyzed, the performance and en-
ergy changes can be explained by code changes or by changes in
performance counter values. Given that some results significantly
deviate from the expected 1:1 correlation between energy and run-
time shown in Figure 3, it is crucial to not only measure runtime
overhead but also energy overhead when testing CVE patches.

4.3 Case Studies
In this section, we discuss interesting results of our measurements.
We discuss a selection of CVEs and corresponding benchmarks
with a significant change in runtime or energy consumption ac-
cording to the Mann-Whitney-U-Test (𝑝 ≥ 5%). For each case study,
we first compare the code changes with the benchmark results.
Second, we look at the change of performance counter values be-
tween the unpatched and patched kernels to gain further insights.
In particular, we track stalled cycles, dTLB-load and dTLB-store
misses, iTLB-load and iTLB-store misses, LLC-load and LLC-store
misses, L1-dcache loads and stores, branch loads, branch misses,
instructions executed, mispredicted branches retired, uOPs issued,
stalled cycles to recover from a misprediction, and the number of
times the front end is resteered, mainly when the branch predic-
tor cannot provide a correct prediction (BACLEARS). We repeated
the measurements for the CVEs discussed in this section to collect
the performance counter-values. We executed the benchmarks 65
times while tracking the performance counters. The newly collected
results are consistent with our first measurements, where we col-
lected results from all CVEs. This further proves the repeatability
and consistency of our results. For all results discussed, we provide
the average overhead in percent, the standard error of the mean
𝜎𝑥 and the sample size 𝑛. To improve readability, numbers that
increase with the patch applied are additionally colored green and
numbers that decrease red.
CVE-2017-1000112. This CVE belongs to an exploitable memory
corruption in the UDP Fragmentation Offload (UFO) implementa-
tion in the Linux kernel [47]. The bug was fixed by adding checks
to four if conditions in the UDP, IPv4, and IPv6 implementations.
The fix results in a runtime overhead of 1.5% (𝜎𝑥 = 0.25%, 𝑛 = 65)
and an energy overhead of 1.4% (𝜎𝑥 = 0.042%, 𝑛 = 65) for the
Stress-NG udp benchmark. Despite this significant change in run-
time and energy consumption, the performance counters indicate
no increase in the number of instructions executed. The increase
stems from an increase in stalled cycles by 2.4% (𝜎𝑥 = 0.7%,𝑛 = 65)
and an increase of stalled cycles used to recover from an earlier
branch misprediction of machine clear event by 12.8% (𝜎𝑥 = 3.1%,
𝑛 = 65). Furthermore, we detected an increase of L1-dcache loads
and stores by 2.3% (𝜎𝑥 = 1.23%, 𝑛 = 65) and 3.0% (𝜎𝑥 = 1.2%,

𝑛 = 65) respectively. The udp benchmark is the only benchmark for
this CVE with a statistically significant runtime or energy overhead,
perfectly matching the fix that changes the UDP implementation.
CVE-2020-29534. This CVE belongs to a bug where io_uring
takes a non-recounted reference to the file struct that submitted a
request [47]. For Stress-NG pipe the runtime overhead decreases
by 0.6% (𝜎𝑥 = 0.46%, 𝑛 = 65) and the energy overhead by 0.9%
(𝜎𝑥 = 0.10%, 𝑛 = 65). The dTLB store misses decrease by 4.6%
(𝜎𝑥 = 0.6%, 𝑛 = 65), the branch misses by 0.92% (𝜎𝑥 = 0.68%,
𝑛 = 65), and the number of cycles stalled due to recovery from a
branch miss by 2.1% (𝜎𝑥 = 1.36%, 𝑛 = 65). Contrary to that, the
BACLEARS increase by 3.6% (𝜎𝑥 = 1.54%, 𝑛 = 65) and the LLC
loads increase by 3.9% (𝜎𝑥 = 1.50%, 𝑛 = 65). From these results, we
assume that the decrease in branch misses and the cycles used to
recover from branch misses are the reasons for the improvements.

For Stress-NG sock the runtime overhead decreases by 0.39%
(𝜎𝑥 = 0.08%, 𝑛 = 65) and the energy overhead decreases by 0.43%
(𝜎𝑥 = 0.02%, 𝑛 = 65). The branch misses decrease by 1.5% (𝜎𝑥 =

0.50%, 𝑛 = 65), the L1-dcache loads decrease by 3.0% (𝜎𝑥 = 1.31%,
𝑛 = 65). Similarly to the pipe benchmark, the improvements for the
sock benchmark are most likely due to fewer branch misses.

Insight 1. By optimizing for branch prediction, patches can,
even with more complex code, significantly decrease energy and
runtime overhead.

For Stress-NG udp, runtime overhead decreases by 1.3% (𝜎𝑥 =

0.19%, 𝑛 = 65) and energy overhead by 1.3% (𝜎𝑥 = 0.04%, 𝑛 = 65).
The dTLB store misses decrease by 7.5% (𝜎𝑥 = 0.63%, 𝑛 = 65),
L1-dcache stores by 1.5% (𝜎𝑥 = 0.47%, 𝑛 = 65), LLC loads by 6.7%
(𝜎𝑥 = 0.72%, 𝑛 = 65), instructions executed by 1.2% (𝜎𝑥 = 0.45%,
𝑛 = 65), and BACLEARS by 6.0% (𝜎𝑥 = 0.70%, 𝑛 = 65). However,
cycles stalled due to misprediction increase by 21.4% (𝜎𝑥 = 4.2%,
𝑛 = 65). Energy consumption and runtime most likely improved
due to fewer instructions executed and lower cache pressure.
CVE-2020-12114. This CVE is a race condition in fs/namespace.c
allowing users to cause a denial of service [47]. The fix results in
a runtime overhead of 1.9% (𝜎𝑥 = 0.35%, 𝑛 = 65) and an energy
overhead of 2.0% (𝜎𝑥 = 0.044%, 𝑛 = 65) for Stress-NG pipe. The
instructions executed increase by 2.1% (𝜎𝑥 = 0.5%, 𝑛 = 65), uOPs
issued by 3.0% (𝜎𝑥 = 1.03%, 𝑛 = 65), dTLB load misses by 2.4%
(𝜎𝑥 = 0.50%, 𝑛 = 65), dTLB store misses by 3.3% (𝜎𝑥 = 0.83%,
𝑛 = 65), and L1-dcache stores by 1.4% (𝜎𝑥 = 0.64%, 𝑛 = 65). The
stalled cycles from misprediction decreased by 5.9% (𝜎𝑥 = 1.50%,
𝑛 = 65), while the overall stalled cycles stalled increased by 2.6%
(𝜎𝑥 = 1.010%, 𝑛 = 65). Therefore, the runtime and energy overhead
changes are most likely due to more code being executed.

For Stress-NG udp, the runtime increases by 0.75% (𝜎𝑥 = 0.19%,
𝑛 = 65) and the energy consumption by 0.87% (𝜎𝑥 = 0.02%,𝑛 = 65).
The amount of stall cycles increased by 2.6% (𝜎𝑥 = 1.09%, 𝑛 = 65)
while the instructions executed only slightly increased by 0.68%
(𝜎𝑥 = 0.48%, 𝑛 = 65). Similar to the pipe benchmark, the stalled
cycles due to recovery from a misprediction decreased by 14.6%
(𝜎𝑥 = 1.51%, 𝑛 = 65). We did not observe an increase in TLB or
LLC misses. We did observe an increase in BACLEARS by 1.4%
(𝜎𝑥 = 0.70%, 𝑛 = 65), which, together with other factors that we
did not track, likely resulted in the overall increase in stalled cycles.
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Therefore, the change in runtime and energy overhead is likely due
to the overall increase in stalls and the reason behind them.

For the network-loopback benchmark, the runtime increased
by 0.25% (𝜎𝑥 = 0.06%, 𝑛 = 65) with no change in energy consump-
tion. This is contrary to benchmark runs form other CVEs, where
runtime and energy overhead change at a similar rate. From all
tracked performance counters, only stalled cycles due to mispredic-
tion recovery increase by 3.2% (𝜎𝑥 = 1.70%, 𝑛 = 65). The change in
runtime is likely due to very subtle changes in performance counter
values, which would require a higher sample size to detect, or due
to reasons that we do not track. The difference between energy
overhead and runtime overhead could stem from a more efficient
way of stalling than stalling from misprediction recovery.

For all affected benchmarks, the changed code is heavily exe-
cuted. The network-loopback benchmark, in particular, executes
changed code lines 159 040 times in its execution.
CVE-2018-1108. This CVE belongs to a weakness in the genera-
tion of random seed data. The weakness allows programs to use the
random seed before it was sufficiently generated [47]. The fix results
in a runtime overhead of 0.72% (𝜎𝑥 = 0.07%, 𝑛 = 65) and an energy
overhead of 1.7% (𝜎𝑥 = 0.24%, 𝑛 = 65) for network-loopback.
While this fix is intended for early boot-time random number gen-
eration by updating four if-conditions in the random number gen-
erator code, it does affect programs even after that. Some of the
changed conditions are frequently executed during random number
generation. The network-loopback benchmark, in particular, exe-
cuted the changed code over 2 600 times per run. Due to this, Branch
misses increased by 4.6% (𝜎𝑥 = 1.49%, 𝑛 = 65) and dTLB load and
store misses by 2.1% (𝜎𝑥 = 0.69%, 𝑛 = 65) and 1.5% (𝜎𝑥 = 0.7%,
𝑛 = 65) respectively. This fix results in an energy overhead that is
significantly higher than the runtime overhead for this benchmark.
The result of the overhead appears to stem from an increase in
mispredictions due to changed if-conditions.

Insight 2. Changes that should only be executed rarely, e.g.,
at boot time, can have a significant impact on regular runtime
through misprediction of added branches that are rarely taken.

CVE-2015-8839. This CVE belongs to multiple race conditions in
the ext4 implementation [47]. For the pipe Stress-NG benchmark
the runtime increases by 1.9% (𝜎𝑥 = 0.19%, 𝑛 = 65) and the energy
consumption by 1.5% (𝜎𝑥 = 0.03%, 𝑛 = 65). For this benchmark the
BACLEARS increase by 7.2% (𝜎𝑥 = 2.86%, 𝑛 = 65), branch misses
by 2.6% (𝜎𝑥 = 0.59%, 𝑛 = 65), LLC loads by 8.4% (𝜎𝑥 = 2.7%,
𝑛 = 65), L1-dcache stores by 2.9% (𝜎𝑥 = 1.74%, 𝑛 = 65), and
instructions executed by 1.4% (𝜎𝑥 = 0.54%, 𝑛 = 65).

For Stress-NG aio, runtime increases by 2.9% (𝜎𝑥 = 0.58%,
𝑛 = 65) and energy consumption by 2.4% (𝜎𝑥 = 0.13%, 𝑛 = 65). For
this benchmark, BACLEARS increase by 5.0% (𝜎𝑥 = 1.80%, 𝑛 = 65),
dTLB store misses by 21.4% (𝜎𝑥 = 4.23%, 𝑛 = 65), dTLB load misses
by 15.8% (𝜎𝑥 = 5.20%, 𝑛 = 65), cycles stalled by 5.8% (𝜎𝑥 = 1.75%,
𝑛 = 65), and instructions executed by 2.0% (𝜎𝑥 = 1.52%, 𝑛 = 65).

For Stress-NG udp the runtime increases by 3.2% (𝜎𝑥 = 0.26%,
𝑛 = 65) and the energy consumption by 2.7% (𝜎𝑥 = 0.15%, 𝑛 = 65).
For this benchmark BACLEARS increase by 2.0% (𝜎𝑥 = 0.64%,
𝑛 = 65), branch misses by 4.1% (𝜎𝑥 = 0.95%, 𝑛 = 65), LLC loads
by 1.7% (𝜎𝑥 = 0.64%, 𝑛 = 65), LLC stores by 6.9% (𝜎𝑥 = 1.37%,

𝑛 = 65), L1-dcache stores by 4.5% (𝜎𝑥 = 0.67%, 𝑛 = 65), and
instructions executed by 3.0% (𝜎𝑥 = 0.91%, 𝑛 = 65). Furthermore,
branch misses increase by 3.4% (𝜎𝑥 = 1.14%, 𝑛 = 65).

For the network-loopback benchmark the runtime increases
by 2.4% (𝜎𝑥 = 0.15%, 𝑛 = 65) and the energy consumption by 2.4%
(𝜎𝑥 = 0.15%, 𝑛 = 65). For this benchmark BACLEARS increased
by 7.2% (𝜎𝑥 = 2.86%, 𝑛 = 65), and LLC loads by 3.4% (𝜎𝑥 = 2.7%,
𝑛 = 65). During a run of the network-loopback benchmark, the
VM executes over 700 000 times code modified by the CVE fix.

As our VM uses ext4 as its filesystem, a change in the ext4 im-
plementation affects a large number of benchmarks. These results
show that minor changes in code frequently executed by most appli-
cations can significantly impact runtime and energy consumption.

Insight 3. Unoptimized branches in CVE patches in code impor-
tant for regular OS operation can have drastic negative impacts
on a wide range of applications.

CVE-2016-5696. This CVE belongs to a bug in the IPv4 TCP
stack that results in improper ACK segment rate determination,
simplifying TCP hijacking through a blind in-window attack [47].
The fix decreases the runtime and energy consumption of Stress-
NG sock by 0.9% (𝜎𝑥 = 0.16%, 𝑛 = 65) and 1.0% (𝜎𝑥 = 0.046%,
𝑛 = 65) respectively. Furthermore, retired branches decrease by
4.8% (𝜎𝑥 = 1.78%, 𝑛 = 65), and stall cycles to recover from earlier
mispredictions by 16.0% (𝜎𝑥 = 2.53%, 𝑛 = 65). This benchmark
is affected by this fix, as it tests socket performance by setting
up a server and client that transmit packages. The fix appears
to decrease the mispredictions when executing Stress-NG sock,
decreasing performance and energy consumption.
CVE-2017-7495. This CVE belongs to a bug in fs/ext4/inode.c
of the ext4 implementation. The implementation mishandles a
needs-flushing-before-commit list with data=ordered mode, allow-
ing users to obtain sensitive information from other users’ files [47].
For the icache benchmark runtime decreases by 2.5% (𝜎𝑥 = 0.25%,
𝑛 = 65) and energy overhead by 2.4% (𝜎𝑥 = 0.03%, 𝑛 = 65). The
reason for these decreases is a decrease in instructions executed by
2.8% (𝜎𝑥 = 0.34%, 𝑛 = 65).

For the network-loopback benchmark the runtime decreases
by 0.5% (𝜎𝑥 = 0.05%, 𝑛 = 65) and the energy overhead by 1.1%
(𝜎𝑥 = 0.03%, 𝑛 = 65). BACLEARS decrease by 2.7% (𝜎𝑥 = 0.93%,
𝑛 = 65), branch misses by 3.2% (𝜎𝑥 = 1.49%, 𝑛 = 65), and L1-
dcache stores by 3.5% (𝜎𝑥 = 1.76%, 𝑛 = 65). The lower runtime and
energy overhead likely stems from fewer branch misses, resulting
in efficient code execution.

5 Analysis of Mitigations
In this section, we discuss our results of all available Linux mit-
igations changeable by command line options. We run the same
benchmarks as in Section 4. A wide variety of mitigations have
been introduced over the past years. We benchmark all mitigation
options available in Linux kernel 6.2 on an x86 system separately
and evaluate the runtime and energy consumption changes intro-
duced by them. We list the available mitigation options and their
parameters in Table 2. For each mitigation, we benchmark all avail-
able options and compare them with the deactivated mitigation.
While most mitigations can only be turned on or off, some can
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Table 2: Tested mitigation options on Linux Kernel 6.2.

Mitigation Options

spectre_v2
off; retpoline; retpoline,generic;

retpoline,lfence; eibrs; eibrs,retpoline;
eibrs,lfence; ibrs; on

spectre_v1 nospectre_v1; spectre_v1
pti off; on

spec_store_bypass_disable off; on
l1tf off; flush; full
mds off; full,nosmt; full

tsx_async_abort off; full
retbleed off; unret; ibpb

mmio_stale_data off; full
l1d_flush on

kvm.nx_huge_pages off; force

be configured to include a specific mitigation strategy. One of the
most configurable mitigations are the Spectre V2 mitigations, with
8 different specific mitigation options.

5.1 Overview
In this section, we present the results of our measurements using
54 benchmark runs, with all not tested mitigation disabled, which
are provided in Table 3 (runtime) and Table 4 (energy). All numbers
are rounded to one decimal place if they are <10 and >−10 and to
the next integer otherwise. There are multiple runs with overheads
listed as 0, which result from very small changes in runtime or en-
ergy consumption (<0.1%). Measurements with no statistically sig-
nificant overhead according to the Mann-Whitney-U-Test (𝑝 ≥ 5%)
are represented by ∗. l1tf, l1d_flush, and kvm.nx_huge_pages
show (almost) no statistically significant change in runtime or en-
ergy consumption. This is as expected, as these mitigations target
either SGX or the execution of VMs. While our tested kernel runs
inside of a VM, it itself does not manage any VMs in any of our
benchmarks. The only exceptions for runtime are the pthread (p-
value: 3.4%) and pipe (p-value: 1.43%) benchmarks for l1tf=flush
and the cpu benchmark (p-value: 1.45%) for l1d_flush. The only
exceptions for energy overhead are the pthread (p-value: 3.76%),
pipe (p-value: 0.46%), and mutex (p-value: 1.45%) benchmark for
l1tf=flush as well as the pipe (p-value: 1.84%), and mutex (p-
value: 4.86%) benchmark for l1tf=full. We reran these bench-
marks and could not find any statistical significance in the newly
collected data. Therefore, we conclude that these were false pos-
itives. A small number of false positives are expected due to the
high number of benchmarks executed and the low sample size.

Overall, energy consumption and runtime correlate well with a
few exceptions discussed later, as shown in Figure 4 with a zoomed-
in view in Figure 5. Each point corresponds to one benchmark
execution where at least the energy overhead or runtime overhead
is statistically significant. We highlight the cardinal axes using
solid lines and the expected 1:1 correlation with a dashed line.
When linearly approximating energy overhead through runtime,
we computed the polynomial 𝑒 = 0.84𝑟+1.14, where 𝑒 is the energy
overhead and 𝑟 the runtime overhead, with an 𝑟2

= 0.992 (1 would
be a perfect representation), indicating that this is a very accurate
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Figure 4: Linux kernel hardware mitigation energy and run-
time overhead.
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Figure 5: Linux kernel hardware mitigation energy and run-
time overhead zoomed-in with an x-range of [−10, 10] and a
y-range of [−10, 10].

approximation. The polynomial indicates that energy overhead
is typically lower than runtime overhead, as shown by the 0.84
coefficient. Calculating the 𝑟2 score for the samples with a small
runtime and energy overhead in the range of [−10, 10] shown in
Figure 5, still containing roughly half of the measurements, results
in 𝑟2

= 0.52. While this linear model works well for large overheads,
it does not provide accurate results for smaller overheads.

5.2 High-Level Analysis
While mitigations have a significant impact on the runtime and
energy consumption of micro benchmarks, the impact on macro
benchmarks is limited, as shown in Table 3 (runtime) and Table 4
(energy). For macro benchmarks, Phoronix network-loopback per-
forms the worst, as the network stack is handled by the kernel,
followed by Phoronix osbench files, which continuously cre-
ates files. Some benchmarks are only minimally affected by the
mitigations, such as Stress-NG cpu and Phoronix pmbench. As the
tested mitigations only change kernel behavior, minimizing kernel
time through fewer syscalls minimizes the overhead. As the cpu
and pmbench benchmarks focus on computations in user space and



Systematic Analysis of Kernel Security
Performance and Energy Costs ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Table 3: Runtime overhead of all measured software mitigations in percent. Values are rounded to one decimal point for changes
<10% and to the next integer for larger changes. Overheads that are not statistically significant are replaced by a ∗-symbol.
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4.3 4.3 * 3.9 4 4.3 71 4.7 * * 17 * * 16 16 6.4 238 16 * *
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17 18 8.4 17 17 18 354 18 1.1 * 84 * * 94 94 19 1,147 94 * *
28 28 17 28 28 28 125 404 1.4 * 21 * * 20 20 10 387 20 * *
* * * * * * * * * * * * * * * * 78 * * *

4.1 4 3.2 4.2 4 3.9 233 4.1 1.3 * 57 * * 62 62 7.6 734 62 * *
* 0.1 * 0.1 * * 1.7 0.1 6.7 * * * * 0.1 * * 3.2 * −0.2 *

6.1 6 2.8 6.1 6 6 26 55 0.3 * 8.3 * * 5.1 5 3.1 89 5 * *
−0.1 −0.1 −0.1 −0.1 −0.1 0.1 0.5 −0.1 −0.1 * 0.2 * * 0.2 −0.1 0.2 1.5 0.2 * *
3.8 3.8 2.3 3.8 3.8 3.9 4.2 3.8 0.4 * 1.5 * * 1.6 1.7 3.7 12 1.5 * *
0.1 0.1 0 0.1 0.1 0.1 1.3 0.2 0.1 * 0.3 * * 0.3 0.3 0.2 4.2 0.3 * *
0.1 0.1 0.1 0.1 0.1 0.1 1.3 0.2 0.1 * 0.3 * * 0.3 0.3 0.2 4.2 0.3 * *
0.1 0.1 0.1 0.2 0.1 0.1 1.4 0.2 0.1 * 0.3 * * 0.3 0.3 0.2 4.2 0.3 * *
0.2 0.2 0.1 0.2 0.2 0.2 1.3 0.3 0.1 * 0.2 * * 0.2 0.2 0.3 4.3 0.2 * *
0 0 * 0 0 0 0.1 0 * * 0 * * 0 0 0 0.4 0 * *
0 0 0 0 0 0 0.2 0 0 * 0 * * 0 0.1 0 0.7 0 * *
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memory accesses, respectively, they are only minimally affected.
Despite this, they are still affected by forced switches to kernel
mode, e.g., through interrupts. The Spectre V1 mitigation shows
that security does not have to come at a cost, as it is optimized
enough that we did not detect any significant overhead.

Similar to CVE patches (Section 4), energy and runtime are
largely correlated, especially for larger overheads as shown in
Figure 4. Despite this, for smaller overheads, the correlation is
significantly weaker (Figure 5), and in some cases, the two met-
rics are completely different. Due to this deviation, similar to CVE
patches, it is crucial to not only measure runtime but also energy
overhead when testing mitigations.

Our measurements also show an untapped way of optimizing en-
ergy consumption. Two examples of this are shown in the Phoronix
apache benchmark for the Spectre V2 ibrs and the Retbleed ibpb
mitigations.While the runtime onlymarginally increases with these
mitigations, the energy consumed drastically decreases. This is the
result of more cycles stalled instead of misspeculation. There seem
to be code parts in the kernel where stalling saves a significant
amount of energy. As energy consumption and runtime deviate in
this case, forcing stalls instead of predictions could optimize energy
consumption without impacting runtime.

5.3 Case Studies
In this section, we discuss interesting results for specific mitigations.
We rerun the benchmarks for these mitigations while tracking

performance counters.We track stalled cycles, dTLB-load and dTLB-
store misses, iTLB-load and iTLB-store misses, LLC-load and LLC-
store misses, L1-dcache loads and stores, branch loads and misses,
instructions executed, mispredicted branches retired, uOPs issued,
and stalled cycles due to misprediction recovery. We use these
performance counters to determine possible reasons for our results.
For all results discussed, we provide the average overhead in percent,
the standard error of the mean 𝜎𝑥 and the sample size 𝑛. To improve
readability, numbers that increase with the mitigation active are
colored green and numbers that decrease red.
Retbleed IBPB. The retbleed indirect branch prediction barrier
(IBPB) mitigation results in the most significant performance hit.
This mitigation introduces a barrier that prevents code executed
before it from affecting future branches [27]. We observe overheads
of 1 147% (𝜎𝑥 = 2.46%, 𝑛 = 54) (runtime) and 959% (𝜎𝑥 = 0.62%,
𝑛 = 54) (energy) in the case of aio, and 972% (𝜎𝑥 = 0.20%, 𝑛 = 54)
(runtime) and 841% (𝜎𝑥 = 0.15%, 𝑛 = 54) (energy) in case of
context. This is due to IBPB introducing barriers that reset the
branch predictor, resulting in more stalls at conditional branches
after the barrier [27].

For all benchmarks, the IBPB mitigation increases runtime. The
energy overhead is almost fully in line with the runtime, with two
exceptions. For apache, the energy consumption decreases by 7.1%
(𝜎𝑥 = 0.03%, 𝑛 = 54), despite a runtime increase. This means that
with IBPB enabled, the apache benchmark consumes less energy
than with the mitigation disabled despite running slightly longer.
Branch misses decrease by 6.8% (𝜎𝑥 = 1.45%, 𝑛 = 90) and cycles
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Table 4: Energy overhead of all measured software mitigations in percent. Values are rounded to one decimal point for changes
<10% and to the next integer for larger changes. Overheads that are not statistically significant are replaced by a ∗-symbol.
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1.9 1.4 * 0.7 1 1.1 30 10 2.1 * 5.5 * * 4.1 4.7 5.6 53 3.8 * *
−8.8 * * * * * 23 * −46 * * 4.3 * 21 25 −10 313 24 * *
4.6 4.3 2.8 4.7 4.5 4.4 289 4.6 0.8 * 79 * * 117 118 8.2 841 118 * *
19 19 11 19 20 19 69 42 1.7 * 18 0.7 0.5 18 19 10 209 18 * *
6.7 7.1 4.6 8.2 6.9 8.3 24 7.1 6.8 * 3.6 * * 6.2 2.9 6.4 41 5.1 * *
14 15 8 16 16 15 151 13 1.3 * 40 * * 44 43 6.3 425 43 * *
25 25 12 25 24 25 98 269 1.6 * 13 * * 17 17 14 282 16 * *
10 10 7.9 10 11 10 87 149 61 * 12 * * 15 14 7.3 169 14 * *
16 17 7.1 16 16 16 308 16 1 * 79 * * 92 91 19 959 92 * *
27 26 16 26 26 26 108 332 1.3 * 20 * * 19 20 10 316 20 * *
* * * * * * 0.4 * * * * * * * * * 73 * * *

4.4 3.9 2.6 3.7 3.7 3.8 192 4.5 1.8 * 49 * * 61 61 8 600 59 * *
* * * * * * 2.1 0.2 5.6 * 0.4 * * * * * 4 0.2 * *
13 14 6.2 13 12 12 53 109 0.9 * 16 * * 11 10 5.9 166 10 * *
* * * * * * * * 1.5 * * 0.3 −0.1 * 0.2 * 1.3 * * *

6.1 5.4 3.1 5.6 5.6 5.7 5.5 6.1 * * 1.6 * * 2.2 2.4 6.3 14 3.2 * *
0.8 0.3 * 0.3 0.4 0.3 0.9 * * * * * * * 0.2 0.7 2 * * *
* * −0.8 * * * −0.4 * 1.1 * −0.5 * * * * 1.3 −0.9 * * *

0.4 * * 0.2 * * 0.9 * 0 * * * * 0.7 0 0.2 1.3 0.1 * *
0.2 * * 0.4 0.3 0.2 5.7 0.6 4.9 * 1.7 * * 2.3 1 0.5 13 2.2 * *
0.5 0.4 0.7 0.4 0.6 0.5 −2 −0.6 * * * * * 0.8 1.1 0.4 −7.1 1.1 * *
* * * * * * * * * * * * * * * * 0.6 * * *

Mitigation

Be
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ar
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stalled increase by 4.2% (𝜎𝑥 = 0.59%, 𝑛 = 90). Due to IBPB, there
are fewer mispredictions in the apache benchmark, counteracted
by more stalls. This leads to a slight runtime increase. As stalls are
more efficient than mispredictions and due to almost no runtime
change, the energy consumption decreases.

Insight 4. Stalling instead of speculating difficult to predict
branches can lead to significant energy savings at almost no
performance cost.

Speculative Store Bypass Disable (SSBD) & Retbleed Unret.
Speculative store bypass allows the CPU to speculatively execute a
load after a store with potentially overlapping addresses if the CPU
predicts that they do not overlap. SSBD forces the CPU to wait until
the addresses of all previous stores are known before executing any
following loads [27]. Executing the pthread benchmark with SSBD
enabled decreases runtime by 41% (𝜎𝑥 = 1.97%, 𝑛 = 54) and the
energy consumption by 46% (𝜎𝑥 = 0.99%, 𝑛 = 54). The instructions
executed decrease by 63% (𝜎𝑥 = 1.08%, 𝑛 = 90), while the amount
of stalled cycles increase by 46% (𝜎𝑥 = 0.82%, 𝑛 = 90). Further-
more, L1-dcache stores and loads, branch loads, branch misses, and
mispredicted retired branches decrease by 60%. The decrease in
runtime and energy overhead seem to stem from fewer instructions
executed and the decrease in mispredictions and cache misses when
spawning a large number of threads. The benchmark seems to reg-
ularly trigger speculative store bypass, leading to mispredictions.
Enabling SSBD, therefore, reduces mispredictions and improves
performance for this benchmark. The retbleed unret mitigation

behaves similar to SSBD for Stress-NG pthreadwith an energy and
runtime decrease of 10% (𝜎𝑥 = 0.85%, 𝑛 = 54) while instructions
executed, and retired mispredicted branches decreased by 11%.
Spectre V1. Contrary to all other mitigations that target code
tested, we did not observe any overheads for the spectre_v1 mit-
igation. To rule out a problem with our setup, we validated that
the mitigation is correctly applied by debugging the kernel. While
unexpected, this result is not unreasonable as the spectre_v1 mit-
igations only consist of lfence and swapgs barriers for selected
user-copy functions, as well as explicit pointer sanitation, on a
case-by-case basis. These defenses are lightweight and might not
be encountered a significant number of times by our benchmarks.

Insight 5. Some mitigations can be lightweight enough to not
result in a statistically significant overhead, making it reasonable
to always enabled them.

Spectre V2 IBRS. Indirect branch restricted speculation (IBRS)
introduces a bit in the IA32_SPEC_CTRLMSR. When this bit is set
after a switch to a higher privilege level, e.g., user mode to kernel
mode, branches executed in the higher privilege mode can not be
controlled by software executed in the lower privilege mode. IBRS is
extremely expensive, which is why some CPUs received a more op-
timized version called enhanced IBRS (eIBRS) [27]. Contrary to the
previously discussed IBPB retbleed mitigation, IBRS takes effect
only when switching to a higher privilege level. The IBRSmitigation
increases the runtime of apache by 0.14% (𝜎𝑥 = 0.01%, 𝑛 = 54) and
decreases energy consumption by 2.2% (𝜎𝑥 = 0.034%, 𝑛 = 54). The
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cycles stalled increase by 28.4% (𝜎𝑥 = 0.47%, 𝑛 = 166), presumably
due to an increase in branch misses by 7.4% (𝜎𝑥 = 0.62%, 𝑛 = 166).
Despite this and the low runtime change, instructions executed
increased by 11.7% (𝜎𝑥 = 0.82%, 𝑛 = 166). LLC-store misses de-
creased by 15.3% (𝜎𝑥 = 3.93%, 𝑛 = 166), L1-dcache loads by 8.0%
(𝜎𝑥 = 1.37%, 𝑛 = 166), and L1-dcache stores by 3.6% (𝜎𝑥 = 1.40%,
𝑛 = 166). The increase in branch misses and instructions executed
seems to be counteracted by the drastic decrease in cache misses,
resulting in only a minor runtime change. We conclude from these
results that the almost unchanged runtime, combined with the
increase in stalls, resulted in this decrease in energy consumption.
PTI. Page table isolation (PTI) unmaps the whole kernel except
for trampoline code and data structures, which always have to be
accessible while in user space. While this mitigation was initially
proposed to protect against a wide range of side-channel attacks
that break kernel address space layout randomization (KASLR) [20],
it was introduced into the kernel as a software mitigation against
theMeltdown attack [19, 44]. PTI has the largest runtime and energy
overheads with 87% (𝜎𝑥 = 0.06%, 𝑛 = 54) and 79% (𝜎𝑥 = 1.06%,
𝑛 = 54) respectively when running the context Stress-NG bench-
mark. The context benchmark continuously performs user-level
context switches. While the user can manage the contexts and
trigger context switches to them, each context switch triggers a
syscall and, therefore, a switch to kernel mode. This results in a
high number of switches between kernel and user mode, which
is the worst case scenario for PTI. The stalled cycles increase by
91.8% (𝜎𝑥 = 14.71%, 𝑛 = 43), the dTLB-store misses by 67.2%
(𝜎𝑥 = 8.07%, 𝑛 = 43), the iTLB-load misses by 35.3% (𝜎𝑥 = 6.90%,
𝑛 = 43), the branch misses by 102.7% (𝜎𝑥 = 3.04%, 𝑛 = 43), uOPs
issued by 431.2% (𝜎𝑥 = 47.8%, 𝑛 = 43). The increased pressure on
the TLB is the result of the regular unmapping and remapping of
the kernel memory. Benchmarks that do not induce a significant
amount of privilege changes are only marginally affected by PTI.
The cpu Stress-NG benchmark, in particular, which performs calcu-
lations purely in user space, has an energy consumption increase of
0.4% (𝜎𝑥 = 0.12%, 𝑛 = 54) and no statistically significant runtime
overhead. Contrary to the expected behavior, the OSBench threads
benchmark from the Phoronix test suit has a runtime increase of
0.28% (𝜎𝑥 = 0.01%, 𝑛 = 54) and an energy consumption decrease
of 0.5% (𝜎𝑥 = 0.13%, 𝑛 = 54). None of our tracked performance
counters indicate why the energy consumption decreased for this
benchmark, but the result is consistent even after multiple reruns.
MDS & TAA. Microarchitectural data sampling (MDS) and TSX
async abort (TAA) mitigations behave almost identically. According
to the documentation, Linux uses the same mechanism to mitigate
both MDS and TAA [31], which is also suggested by Intel in their
advisory [28]. The slight differences in some of the measurements
for the two can be attributed to noise and the low sample size.

6 Discussion of Limitations & Robustness
In this Section, we discuss the limitations to our work and the
robustness of our results. While there are limitations to our work,
we discuss why they do not affect our main insights.
Setup. CVEs affect specific systems in virtualized or native environ-
ments. In particular, we only focused on Linux kernels in a virtual
machine. There may be vulnerabilities that affect only kernels in

virtual machines or only kernels outside of virtual machines (home
computer scenario), or other kernels than Linux. Future work has to
determine whether the relation between performance and energy
is similar for scenarios and kernels we did not study.

We measure the energy consumption with RAPL of the whole
CPU package on a single system for comparability of the measure-
ments. The measurements, thus, include the energy consumption
of host programs and the hypervisor. The host and hypervisor
are the same for all test runs and, hence, add a noisy baseline to
the measurements but the absolute overheads stays the same. To
compensate for the noise, we perform >60 measurements.
Patch Commit Choice. There is no generic way to find all CVE
fix commits. We benchmark only the commit that marks the CVE
as fixed. This strategy is sufficient for smaller and, therefore, most
CVEs, as they are usually fixed by one commit. Larger CVEs might
have multiple commits with other commits in between. For major
vulnerabilities, such as Meltdown and Spectre, that were under
embargo, the fix commit might only change the names of defines
and does not directly fix the vulnerability. We cannot test these
fixes using our automatic approach. To incorporate mitigations to
major hardware vulnerabilities into our evaluation, we individually
benchmark each mitigation that can be activated and deactivated
through command line options on the recent Linux 6.2 kernel.
Prefiltering. The benchmark prefiltering (Section 4.1) is funda-
mental to efficiently test a wide range of CVEs on a wide range of
benchmarks in a short amount of time. It allows us to run bench-
marks only on CVEs that use the affected code. Using breakpoints,
while completely automatic, can lead to false positives and false
negatives, e.g., if the code change is in a preprocessor macro. Fur-
thermore, our prefiltering does not account for changes in the
binary layout due to the fix. This may affect performance and en-
ergy consumption due to caches and other CPU internal buffers
and optimizations. Accounting for such changes is infeasible as
they can also occur from a compiler version or build system change
and can be negated entirely by unrelated code changes.
Measurement Accuracy. Systematic energy analyses require
accurate energy measurements from software, e.g., RAPL. However,
in response to attacks via RAPL [43], Intel limited RAPL’s accuracy
in certain cases [29]. For this work, the mitigation is inactive, and
unfiltered energy measurements are reported by RAPL.
Benchmark Choice. While we chose a broad set of benchmarks,
covering awide range of the Linux kernel’s functionality, our results
are inherently limited by our selection. This is an inherent issue
with benchmarking. Therefore, it is not possible to determine the
energy or runtime overhead of CVEs on kernel code parts that
are not covered by our benchmarks, e.g., CVEs that affect other
architectures, not used drivers, not tested kernel interfaces.
Hardware Choice & Measurement Interface. In this work, we
execute all our measurements on an i7-6700K. Depending on fac-
tors such as microarchitecture and core frequency, these results can
differ on other CPUs, limiting their general applicability. Despite
this, our experiments can show a general trend between energy
overhead and runtime overhead, as well as unexpected results such
as energy and runtime overhead differing from each other. Further-
more, the framework described in this work can be easily applied
to kernel versions running on a wide range of CPUs.
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For our experiments, we use the Intel RAPL interface. As RAPL
onlymeasures CPU energy consumption, our determined overheads
are CPU energy overheads and do not include other parts of the
system, e.g., disk and network card. Therefore, additional overheads
induced by a patch or mitigation outside of the CPU are not covered
by our results. Most of these additional overheads would most
likely be due to changes in runtime, as most CVE patches and
mitigations target software or CPU hardware vulnerabilities and
not devices. Additionally, while our experiments are executed on an
Intel CPU relying on Intel RAPL, this interface can be replaced by
other available measurement interfaces, e.g., AMDRAPL [2] or even
smart plugs that can cover the whole system energy consumption,
making our framework applicable to a wide range of CPUs.

7 Discussion & Related Work
Our work highlights a fundamental problem in the security re-
search community: Energy costs of security fixes and mitigations
are systematically not measured and thus not understood. In the
systems community, measuring energy costs has already become
more common, as energy costs are highly relevant to assessing the
value of newly proposed mechanisms (cf. Section 3.2). The twomost
closely related works are by Herzog et al. [24] and Siavvas et al. [60].
Herzog et al. [24] specifically focused on mitigations against Melt-
down [44] and Spectre [37]. They made the surprising observation
that for KPTI [19], some benchmarks show different overheads for
energy than for performance, motivating our more comprehensive
study of 1 616 Linux CVE fixes and all Linux security mitigations.

Performance and energy costs of mitigations reach far beyond
the Linux kernel, and future work needs to investigate in both di-
rections: On the level of applications and libraries, mitigations can
have a substantial impact on performance and energy consumption,
e.g., the Chrome site-isolation patch already had a reported over-
head of 8.2% on the CPU usage [57]. Similarly, on the hardware
side, there are substantial costs attached to mitigations. Examples
include the initial patches against Rowhammer that doubled the
refresh rate. While the performance cost of the double refresh rate
is reported as around 8% [35, 40], it can be expected that the energy
cost is higher as the performance is only affected when a DRAM
access is deferred due to a refresh operation occurring exactly at
the same time. However, the cost to charge and cells always applies.
Another example of the hidden cost of security measures is Intel’s
mitigation to the Plundervolt attack on SGX [51] was to disable the
corresponding DVFS interface via a microcode update, which was
already only accessible with kernel privileges. As a consequence,
system-specific optimization of voltage and frequency is largely
impossible on updated machines and on more recent processors.
Juffinger et al. [30] report efficiency gains of up to 20% from voltage-
frequency optimizations that are now made impossible due to the
disabled DVFS interface. Thus, we see room for future work in
many directions following up on our work.

While RAPL and similar interfaces can be used to profile a CPU’s
energy consumption for profiling [22, 34, 55], they are also ac-
tively used in a wide range of attacks. The first works exploring the
security aspects of Intel RAPL focused on container co-location de-
tection [16] and branch side-channel attacks [15]. Mantel et al. [49]
demonstrated a side-channel attack distinguishing RSA keys. More

recently, Lipp et al. [43] showed that RAPL-based energy measure-
ments are precise enough to mount power analysis attacks [6, 38]
purely from software. Surprisingly, their work showed that even
the values of data operands can have a RAPL-measurable effect on
the energy consumption. Subsequently, Wang et al. [63] showed
that the energy-budget-induced throttling even creates remotely
measurable timing differences. Liu et al. [45] demonstrated that the
power side channel signal is also contained in the frequency due to
the same throttling due to dynamic voltage and frequency scaling
(DVFS). Kogler et al. [39] showed that specific workloads can am-
plify the leakage to speed up software-based power analysis attacks
significantly. Qin et al. [56] and Yan et al. [64] used interfaces on
mobile devices that report direct or indirect information on the
power consumption (voltage, current, battery charge) and demon-
strated website and application fingerprinting attacks. O’Flynn [52]
exploited an onboard analog-to-digital converter to recover secrets
processed in the secure world on a TrustZone-enabled device.

8 Conclusion
In this paper, we presented the first systematic analysis of the en-
ergy costs of CVE fixes and mitigations with the Linux kernel as a
case study.We evaluated Linux kernel CVE fixes starting from Linux
4.0 over an 8-year time frame, covering 1 616 CVEs that we can au-
tomatically map to patch sets present in the source-code versioning
repository. We automatically compiled Linux pre- and post-patch
and benchmarked them using the Stress-NG and Phoronix bench-
mark suits. Overall, our work confirms benchmark-affecting code
changes for 108 Linux CVE fixes, for which we collected energy
and performance data. We also benchmarked all flag-controlled
mitigations. While energy and performance cost is largely corre-
lated, there are notable exceptions where energy and performance
costs diverge significantly. It is important to note that this is not a
cost-benefit analysis of CVE patches and whether they should be
applied. Instead, our work underscores the need for future security
research to evaluate both performance and energy cost.
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