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Abstract

Modern GPUs are not only used for graphics processing but high-security applica-
tions such as high-volume encryption. Previous work has demonstrated side-channel
attacks on GPUs using electromagnetic radiation, the last-level cache in multi-GPU
systems, and shared memory bank conflicts. However, so far there are no practical
cache attacks on single GPU systems.

In this thesis, we propose a Prime+Probe-based attack that targets single Nvidia
GPUs in a shared environment and can recover the full AES-128 key on a GPU-
accelerated AES implementation. We evaluate cache access timings and their
relation to the particular addresses they are measured from and the location on the
GPU. Using this relation, we reverse-engineer the cache layout, cache slices, and
even the overall layout of modern Nvidia GPUs from both the Turing and Ampere
architecture. We propose an efficient and fast way to build cache eviction sets by
taking advantage of the exact cache access timings of memory locations. With our
eviction sets, we build a Prime+Probe-based cross-user cache covert channel on
modern Nvidia GPUs with a transfer speed of 2.5kB/s. We present a first-round
cache side-channel attack on an AES-128 T-table implementation running on a
modern Nvidia GPU that can recover 48 bit of the key. Furthermore, we present a
last-round attack on AES that can recover the full key requiring only ten thousand
encryptions with the unknown key in 15.988 £ 1.960s.

Keywords: Cache Attacks - GPU Attacks - CUDA - Vulkan - Prime+Probe
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Kurzfassung

Moderne GPUs werden nicht nur fiir Grafikverarbeitung, sondern auch fiir Hochsi-
cherheitsanwendungen wie die Verschliisselung von grofien Datenmengen verwendet.
Frithere Arbeiten haben Seitenkanalangriffe auf GPUs mit elektromagnetischer
Strahlung, den Last-Level-Cache in Multi-GPU-Systemen und Konflikte zwischen
gemeinsam genutzten Speicherbanken demonstriert. Bisher gibt es jedoch keine
praktischen Cache-Angriffe auf Systeme mit nur einer GPU.

In dieser Arbeit schlagen wir einen Prime+Probe-basierten Angriff vor, der auf
einzelne Nvidia-GPUs in einer gemeinsam genutzten Umgebung abzielt und den
vollstandigen AES-128-Schliissel auf einer GPU-beschleunigten AES-Implementierung
extrahieren kann. Wir schauen uns die Cache-Zugriffszeiten und ihre Verbindung zu
den jeweiligen Adressen, von denen sie gemessen werden, und zum Speicherort auf
der GPU an. Unter Verwendung dieser Informationen folgern wir Riickschliisse auf
das Cache-Layout, die Cache-Slices und sogar das Gesamtlayout moderner Nvidia-
GPUs sowohl auf der Turing- als auch auf der Ampere-Architektur. Wir schlagen
einen effizienten und schnellen Weg vor, um Cache-Eviction-Sets zu erstellen, indem
wir die genauen Cache-Zugriffszeiten von Speicherorten ausnutzen. Mit unseren
Eviction-Sets bauen wir auf modernen Nvidia-GPUs einen Prime+Probe-basierten
benutzeriibergreifenden Cache-Covert-Kanal mit einer Ubertragungsgeschwindig-
keit von 2.5kB/s auf. Wir prasentieren einen Last-Round-Seitenkanalangriff auf
eine AES-128-T-Table-Implementierung, die auf einer modernen Nvidia-GPU lauft
und 48 bit des Schliissels wiederherstellen kann. Dariiber hinaus prasentieren wir
einen Last-Round-Angriff auf AES, der den vollstandigen Schliissel wiederherstel-
len kann und nur zehntausend Verschliisselungen mit dem unbekannten Schliissel
bend6tigt in 15.988 4 1.960s.

Schlagworter: Cache-Angriffe - GPU-Angriffe - CUDA - Vulkan - Prime+Probe
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Chapter 1

Introduction

Over the past decade, cache side channels have proven to be an extremely powerful
tool not only for direct attacks on applications but also as a building block for
more powerful microarchitectural attacks such as Spectre-type attacks [24, 25, 44],
Meltdown [27], and LVI [45]. Caches are a fundamental part of modern CPUs.
They work around the low access speeds and high latency of DRAM and any other
kind of memory-mapped 1/0O.

The advances and popularity of neural networks and the high availability of modern
high-performance multi-purpose Graphics Processing Units (GPUs), even in the
low-end consumer market, have led to a rise of General Purpose Graphics Processing
Units (GPGPUs) throughout the past years. Nvidia, in particular, played a huge
role in this by making every modern Nvidia GPU compatible with their GPGPU
API CUDA, including low-end consumer GPUs [35]. More and more applications
take advantage of the GPU not only by using the typical shader pipeline that
such a GPU might have implemented but also for general-purpose computing
such as artificial intelligence, video editing [41], data processing of enormous data
sets [3], and even cryptography [30, 34, 14, 19]. This increase in GPU usage for
general-purpose computation and therefore increase in the complexity of modern
GPUs leads to a higher need for security on this hardware that was previously
mainly used for low-security applications. In particular, in the case of cryptography,
security is of the utmost importance.

Cache side channels have received a high amount of attention in the past on all
kinds of CPUs [9, 24, 25, 44, 45, 47]. GPUs are often ignored when it comes to
side-channel attacks due to their only recent rise in popularity for more general
applications. Modern GPUs are designed for highly parallelized workloads that
execute the same code on varying underlying data. While the workload of GPUs
and CPUs is fundamentally different, GPUs incorporate caches similarly to modern
CPUs to improve DRAM access timings and overall access speed.
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In this thesis, we take a close look at the caches of modern Nvidia GPUs. We
show not only that cache attacks are practical on GPUs but also that there is
a lot of undocumented information about GPU designs that can be extracted
by observing the timing behavior of cache accesses and fences. There is a clear
correlation between the physical location an SM has on a GPU and the L2 cache
access timings and memory access timings measured on it. By closely observing L2
cache access timings, we are able to recover the exact L2 cache slice that a memory
location belongs to. We use this information to create the currently fastest and
most efficient way for building eviction sets on Nvidia GPUs without access to
physical addresses. The found eviction sets can enable further cache attacks such
as Prime+Probe and Evict+Time [40]. To achieve this, we not only take advantage
of the slice-related access timings to divide the L2 into multiple smaller search
spaces but also that an application running on the GPU has exclusive access to
the L2 and other resources, making timing measurements extremely accurate.

We create a simple Prime+Probe-based covert channel on a modern Nvidia GPU
that can transfer data with up to 2.5kB/s between a Vulkan and a CUDA appli-
cation run by two completely independent users sharing a GPU. We demonstrate
a first- and last-round attack on an AES-128 T-table implementation running on
an Nvidia GPU. To build the eviction sets for the T-tables, we use our proposed
algorithm for building L2 eviction sets to find an eviction set for each L2 cache set
and filter through them by measuring encryptions with a known key and known
plaintext. Our first-round attack on the AES-128 T-table implementation is able
to recover 48 bits of the AES key, and our last-round attack is able to recover the
full 128 bit AES key by monitoring only ten thousand encryptions.

Contributions.

1. We evaluate cache access timings and their relation with not only the particular
addresses they are measured from but also the location on the GPU.

2. We determine cache timings and fence timings and reverse-engineer the cache
layout, cache slices, and even the overall layout of modern Nvidia GPUs from
both the Turing and Ampere architecture.

3. We propose an efficient and fast way to build eviction sets by taking advantage
of exact cache access timings of memory locations.

4. We build a cross-user cache covert channel on modern Nvidia GPUs with a
transfer speed of 2.5kB/s.

5. We propose Prime+4Count, a stronger version of the Prime+4Probe attack
that can recover the exact number of cache lines evicted by a victim.
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6. We present a first and last-round cache side-channel attack on an AES-128
T-table implementation running on a modern Nvidia GPU that is able to
recover 48 bits of the key in the case of the first-round attack and the full key
in the last-round attack.

Outline. Chapter 2 gives an overview of cache architectures, modern cache
attacks, and modern Nvidia GPU architectures. Chapter 3 explains our timing
measurement methods, observations we made about cache access and fence timings,
and an efficient algorithm to search for L2 cache eviction sets. In Chapter 4, we
propose a Prime+Probe-based cross-application cache covert channel that runs on
a modern Nvidia GPU. In Chapter 5, we present a first-round and a last-round
attack on an AES-128 T-table implementation running on a GPU, including a full
key recovery. In Section 2.5, we discuss work related to our findings and attacks.
We summarize our results and conclude in Chapter 6.



Chapter 2

Background

2.1 Cache Architecture

Modern DRAM is very slow compared to CPUs. A typical DRAM access can take
between 200 and 300 CPU cycles. This is a significant amount of time the CPU
would need to stall to receive memory, given that there are many instructions that
can be completed in just a single cycle. Due to this, memory accesses on modern
CPUs do not directly access the DRAM but the on-chip cache. The CPU fetches
data from DRAM into the cache if the accessed data is not present in the cache.
By storing recently accessed data in this middle layer, it is possible to decrease the
overall memory access time significantly, down to a few cycles depending on the
cache layer the data has to be loaded from.

Figure 2.1 shows the typical cache hierarchy of a modern x86 CPU. L1 through L3
consist of fast on-chip memory increasing in size the further away from the CPU
cores they are. The cores directly access the L1, which is often divided into a data
cache (L1D) and an instruction cache (L1I).

L2 and L3 both store instructions and data. When a core accesses memory, the
L1 is searched first. If the data is not present in the L1, the next cache level is
searched. If the data is not present at any cache level, the CPU will fetch it from
DRAM. Once the data reaches the CPU, it is propagated back up through the
searched caches and forwarded to the core that sent the initial request. If the data
is present in one of the higher levels, such as the L1, lower levels, such as the 1.2
and L3, do not have to be searched, decreasing access times if data is present in
one of the faster cache levels. Data found in the L1 is immediately forwarded to
the core without checking the L2, L3, or the DRAM.

Since there are caches shared between cores, such as the last-level cache (LLC),
which in Figure 2.1 is the L3, memory access timings can vary due to the possible
influence of other programs running on other cores. Data stored in the LLC by one
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Figure 2.1: Typical cache hierarchy of a modern x86 CPU.

core running one program might get evicted by a different core running a different
program to free up required cache space and load different data from DRAM. This
can influence the runtime of programs in both a negative way, if needed data is
evicted from the cache, and a positive way, if data that is needed by a program
has already been loaded into the cache by a different program.

2.1.1 Cache Addressing

CPU caches have to be fast temporary memory storage with access times that
only take a few cycles. The cache size is usually significantly smaller than the
DRAM size, and every memory location needs to map to some location in the
cache as quickly as possible. To achieve this mapping while still making it possible
to store multiple memory locations that map to the same part of the cache at a
time, modern processors employ set-associative caches [17]. For each cache access,
the accessed address is split into three parts: the offset into the cache line, an
index, and a tag. The offset is directly related to the cache-line size and consists of
the least significant bits of the address. A cache-line size of 64 B would therefore
mean 6 offset bits. The index is usually right after the offset and is the identifier
of the cache set. The rest of the address is used as the tag. A cache set consists
of multiple so-called ways, which are individual cache lines. A cache line usually
consists of at least the data, a unique identifier called a tag, and a valid bit. The
number of cache lines in a set is processor-dependent. To find the correct cache
line in a set, the tag extracted from the address is simultaneously compared with
all ways in the set. Since this is combinatorially for all cache lines in parallel, this
lookup is almost instant. The corresponding cache line is returned if it contains
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the matching tag and is valid. If no valid matching cache line can be found, the
access results in a cache miss.

With virtual memory enabled, a memory location can have both a physical and a
virtual address. Both of these addresses can be used for cache lookups. The two
important parts for cache lookups, the tag, and the index, can each be derived
from either the physical or the virtual address. The offset stays the same in both
cases since address translation is done at page size granularity, and the smallest
page size is usually significantly larger than the cache line size. There are three
common ways to split up the index and tag calculations:

e Virtually Indexed Virtually Tagged (VIVT)
e Virtually Indexed Physically Tagged (VIPT)
e Physically Indexed Physically Tagged (PIPT)

VIVT is fast since it does not require a translation from the virtual to the physical
address. PIPT requires a full address translation before the cache can be searched.
This extra translation slows down cache accesses significantly compared to VIVT
but has the advantage that shared memory has to be stored in the cache only once,
even if the memory area is mapped to different virtual addresses across different
address spaces. Due to this, PIPT is a very appealing option for the LLC, which
stores data accessed by multiple cores that might not share a virtual address space.
VIPT computes the index from the virtual address and reads the tag from the
physical address. While this might seem slow compared to VIVT, it usually has
minimal performance overhead if the address translation is cached since the address
translation can be done in parallel to indexing the cache set. If all of the index bits
lie within the page offset of the smallest page size of the architecture, both PIPT
and VIPT behave identically since the page offset part of an address is always the
same in the virtual and the corresponding physical address.

2.1.2 Cache Slices

The LLC is usually shared across all cores of a CPU. This can lead to a high
number of parallel accesses to the LLC and, therefore, congestion [31]. Due to
this, on Intel CPUs, the LLC is divided into so-called cache slices [17]. Each cache
slice consists of a set-associative cache and is directly connected to one CPU core.
The slices are connected to each other to enable a core to access a cache slice to
which it is not directly connected. Intel employs a ring, or a mesh interconnect
for their CPUs [17]. Physical addresses are uniformly distributed across all cache
slices. This uniformity is achieved with a hash function.
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Figure 2.2: Cache hit and miss timings of an i7-3820. The cache hits are at around
125 cycles, and the cache misses at around 325 cycles. There is a clear
difference between the cycle counts of a cache miss and a cache hit with
a difference of over 150 cycles.

The hash function takes the physical address bits, excluding the cache line offset
bits, and computes the slice ID. These functions are not officially available and
can depend on the CPU manufacturer and sometimes the CPU generation. Slice
functions for various processors have already been reverse-engineered [15, 18, 28|.
Slice functions usually consist of multiple XOR functions applied to the physical
address, resulting in a fast but predictable way to compute slice IDs.

2.2 Cache Attacks

Caches provide a considerable performance boost to modern processors, but they
also provide the opportunity for side-channel attacks due to their shared nature.
Since caches are not process-dependent, two completely independent workloads
from two different processes can load data into the cache for each other and evict
data cached from a different process. While data cannot be directly leaked this
way, the knowledge that certain data was cached or evicted can leak sensitive
information. In this section, we discuss existing cache attacks and explain how
they make it possible to leak information from other processes that run on the
same processor.
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2.2.1 Flush+Reload

Flush+Reload is a cache-based side-channel attack that takes advantage of shared
memory and the often physically-indexed and physically-tagged last-level cache [47].
Figure 2.2 shows the cycle difference between a cache miss and a cache hit on
an i7-3820. The exact instructions measured are an mfence, a mov, and another
mfence. The mfence instructions provide serialization of memory operations and
take up most of the cycles in our plot in the case of a cache hit. There is a clear
difference between a cache hit at around 130 cycles and a cache miss at around
320 cycles. The exact cycle counts are highly hardware-dependent, but there is
always a clear difference between a hit and a miss.

Flush+Reload leverages the time difference between a cache hit and a cache miss
to detect if a memory region has been recently accessed and infers information
from it. The last-level cache of modern CPUs usually has physically-indexed and
physically-tagged (PIPT) cache lines. This means that the index that specifies
the cache set that a memory chunk is cached in and the unique tag that identifies
the correct cache line in the set are both derived from only the physical address.
Physical memory accessible through multiple different virtual addresses and even
from different address spaces is only cached once while being accessible through all
of these separate mappings.

A typical Flush+Reload attack requires some form of shared memory between the
attacker and the victim and information that can be extracted through accesses to
this shared region. An attacker can create shared memory with other applications
on modern operating systems by loading data from the disk, such as shared libraries
or other files, and through active deduplication through the operating system. Both
of these methods result in shared copy-on-write pages between processes. Shared
libraries, in particular, are commonly used for this kind of attack since it is easy to
reliably get shared memory with the victim if the library the victim application uses
is accessible to the attacker. To set up this kind of shared memory, the attacker
maps the shared library or file the victim uses into its own address space.

Shared memory through deduplication is rarely used since the attacker has to create
an exact copy of the victim’s page that it wants to monitor, and the operating
system has to support page deduplication. While many modern hypervisors [46, 5],
and operating systems [2] support this, it often requires more information about
the victim’s memory than mapping the same library into the attacker’s address
space.

Once the attacker has a shared memory region containing an area of interest with
the victim, they flush the memory area they want to monitor. The victim is
now being scheduled. Once the victim is done, the attacker accesses the memory
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location and measures the access time. If the access time indicates a cache hit, the
victim has recently accessed the memory location. If the access time indicates a
cache miss, it was most likely not accessed by the victim.

Initially proposed as an attack on shared libraries [47], due to its simplicity and
the information one can gain about the microarchitectural state by knowing if
data is cached, Flush+Reload is now used as an essential building block for
microarchitectural attacks [27, 24, 43, 42].

2.2.2 Flush+Flush

The Flush+Reload attack requires the attacker to access the targeted shared
memory and measure the access time to determine if the victim has loaded the
data [13]. Once the attacker checks the memory location, they flush it from the
cache. The flush is required to reset the cache to a state where the next time the
victim is scheduled they can load the data back into the cache, which the attacker
can, later on, observe again. Due to this, the attacker code always consists of a
timed memory access and a flush to reset the state for future measurements. The
data fetched is not required by the attacker, but whether it was recently cached.
The memory access introduces a considerable amount of overhead by loading data
from the slow DRAM only to evict it right afterward.

The Flush+Flush attack removes the memory access by the attacker by instead
timing the flush operation. A typical cache-line flush on a multi-core processor
does not only consist of the eviction of the corresponding cache line from all caches
directly accessible by the core. Since the LLC on modern x86 CPUs is often
inclusive [17], cache lines flushed from it must be removed from the L1 and L2 of
all cores that share the LLC. Due to this extra work that only has to be done if
the memory is cached, a small timing difference can be observed between a flush
on memory that is cached and memory that is not cached. Memory that is not
cached can be flushed from the cache faster since the flush instruction only has to
look up whether the memory is cached, and if it is not cached, the CPU does not
have to search and evict cache lines from other L1 and L2 caches.

The removal of the memory access increases the performance of the attack signif-
icantly. This way of checking for cached data removes one of the primary time
sinks of other cache-based side-channel attacks and led to the fastest cache covert
channel at the time Flush+Flush was introduced [13].



CHAPTER 2. BACKGROUND

Attacker Victim Attacker Victim
\ \ \ \ \ \ \ \ \ \
Cache Set Cache Set
(a) Evict all cache lines. (b) Victim scheduled.
Attacker Victim

m slow
\ \

Cache Set

(c) Check evictions.

Figure 2.3: Overview of the Prime+Probe attack. First, the cache set is filled by
the attacker. Second, the victim loads memory into the same cache set
evicting cache lines of the attacker. Last, the attacker checks if their
cache lines were evicted by timing the memory accesses.

2.2.3 Prime-+Probe

The Prime+Probe attack, as described by Osvik et al. [40], allows an attacker to
monitor a victim’s cache set usage through cache evictions. Contrary to other
attacks, such as Flush+Reload and Flush+Flush, Prime+Probe does not extract
information from cache hits and does not require shared memory. Prime+Probe
takes advantage of a shared cache and how evictions work in modern caches. Since
the size of a cache set is limited, multiple addresses map to the same cache set,
even from different processes. Once a set is full and memory that maps to this set
is loaded from DRAM, cache lines that are currently present in the cache set have
to be evicted to free up space. If such an eviction occurs and the evicted cache line
is reaccessed afterward, it must be reloaded from either lower cache levels or the

DRAM.

Prime+Probe exploits this eviction behavior to detect if a victim loaded a cache
line. This monitoring of cache-line loads is achieved with a so-called eviction set.
Members of an eviction set have to occupy the whole cache set to detect all accesses
to the cache set. For a cache set that can hold W cache lines, an eviction set
consists of at least W different memory lines that map to the same cache set in
order for it to occupy the whole cache set. When the members of an eviction set
are loaded into the L3, they fill up the cache set it is responsible for.

10



CHAPTER 2. BACKGROUND

In an attack, the attacker first loads the members of an eviction set, or even from
multiple eviction sets, if the goal is to monitor multiple cache sets at a time, into
memory, as shown in Figure 2.3a. The monitored cache set now only consists of the
eviction set members, and every new load to it will evict a member of the eviction
set. Next, the victim is scheduled. If the victim accesses addresses that map to the
monitored cache set, parts of the eviction set are evicted, as shown in Figure 2.3b.
When the attacker is scheduled again, they can measure the access timings to all
memory lines of an eviction set, as shown in Figure 2.3c. The detected evictions
inform an attacker about if a cache set was accessed by the victim. The exact cache
line evicted depends on the replacement policy employed by the CPU. Popular
replacement policies include Least Recently Used (LRU), Not Recently Used (NRU),
and Random. Usually, an approximation of LRU, pseudo LRU (pLRU), is used
since accurate LRU is difficult to implement.

Compared to Flush+Reload, Prime+Probe does not monitor one specific memory
location. Instead, it looks at whole cache sets, making it significantly more flexible
in its application because it does not require shared memory but only a shared
cache.

2.2.4 Evict+Time

Evict+Time, proposed by Osvik et al. [40], takes a very similar approach to the
previously discussed Prime+Probe attack. The attack focuses on observing the
timing behavior cache evictions have on the runtime of a victim application. Similar
to Prime+Probe, the first step in Evict+Time is to build an eviction set for the
cache set to be monitored. The attacker measures the execution time of the victim.
Then the attacker evicts all cache lines in a cache set. Lastly, the attacker measures
another execution of the victim. If the execution takes longer, the attacker evicted
a cache line that the victim application accessed. If the execution takes the same
amount of time, then the monitored cache set was not accessed.

Evict+Time takes advantage of the time difference between cache hits and misses.
When the attacker loads the members of the eviction set, the victim data present
in the corresponding cache set is evicted. Depending on whether the victim has
to reload the data into the cache set, a slight timing difference can be observed.
This timing difference provides an attacker with information about the victim’s
execution. While the execution time difference of a few extra cache misses is small
compared to the overall execution time of a typical victim application, as long as
the attacker can repeat such a measurement often enough, it is detectable and
exploitable.
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Figure 2.4: Chip layout of an RTX 2070 GPU taken from [38§].

2.3 GPU

Over the last decades, Graphics Processing Units (GPUs) changed significantly in
their roles and design. Initially designed to manage video output through the frame
buffer, GPUs evolved from providing basic shaders and post-processing to a more
general second processor, which offers high parallel throughput for graphics-related
applications and general-purpose computing. Advances in modern-day graphics
processing and the possibility for a very high amount of parallelism make General
Purpose Computation on Graphics Processing Units (GPGPU) more and more
relevant. Due to this, both GPU manufacturers and other vendors provide not only
APIs for graphics processing such as Vulkan, OpenGL, and DirectX, but also APIs
for GPGPU such as CUDA [35] for Nvidia GPUs, ROCm [1] for AMD GPUs, and
OpenCL [10] as an open-source platform-independent API.

2.3.1 Nvidia GPU Architectures

The layout of an RTX 2070 can be seen in Figure 2.4. A typical Nvidia GPU
consists of a global L2 cache and multiple Graphics Processing Clusters (GPCs). A
GPC consists of multiple Texture Processing Clusters (TPCs) and, depending on
the exact architecture, some extra hardware, such as a raster engine in the Ampere
and Turing architectures. The number of TPCs, a given GPC consists of depends
on the exact chip type and varies even within an architecture. TPCs consist of
multiple Streaming Multiprocessors (SMs) and, depending on the architecture,
extra hardware such as a polymorph engine in the Ampere and Turing architectures.
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Figure 2.5: Nvidia Turing SM layout taken from [38].

Contrary to GPCs, TPCs are the same within a given architecture, and in the case
of the Ampere, Turing, and Pascal architectures, they consist of two SMs [38].

Figure 2.5 shows the layout of an SM from the Ampere architecture. An SM is the
part of an Nvidia GPU that comes closest to a traditional CPU core. It consists
of an L1 cache, Shared Memory, which is fast on-chip memory that can be used
by applications for frequently accessed data, a separate texture cache, multiple
processing blocks, and in recent architectures, a raytracing core. Processing blocks
are the parts of a GPU that execute instructions. Each processing block consists of
one warp scheduler, one register file, one dispatch unit, and multiple sets of math
and other units. Processing blocks are comparable to execution units on CPUs.
On more recent architectures, processing blocks might also include an instruction
L0 cache and tensor cores [37].

Nvidia GPUs have full support for virtual memory on the GPU. Modern Nvidia
GPUs support virtual address sizes of up to 49bit. The exact address size is
dependent on both the GPU architecture and the architecture of the CPU. Virtual
address spaces on the GPU are generally separate from the virtual address spaces on
the CPU. The required paging structure is usually stored in the GPUs DRAM [35].

Modern GPUs are slowed down by DRAM access times and speed. To combat
this, they employ caches similar to CPU caches. An example of a GPU cache
hierarchy can be seen in Figure 2.6, which depicts the cache hierarchy of Nivida
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Figure 2.6: Cache hierarchy of Nvidia Turing GPUs.

Turing GPUs. While there have been a lot of different GPU architectures over the
last few years, the overall cache hierarchy only received slight changes. The main
change is the addition of an L0 instruction cache per processing block [37]. Nvidia
GPUs have L0, L1, and L2 caches, with L2 being the last level cache (LLC). The
L0 and L1 are VIVT, while the L2 is PIPT [20]. The L2 is a 16-way set-associative
L2 cache with 128 B cache lines [20, 36]. All processing blocks within an SM share
one L1 cache, and the whole GPU has one global L2 cache. The caches cannot
be disabled, and all accesses from the GPU to the GPUs DRAM or the system
memory must go through both the L1 and the L2. The GPUs DRAM can only be
accessed through the L2, even when performing DMA from system memory.

2.3.2 CUDA

CUDA is a general-purpose compute platform for writing highly parallelized applica-
tions designed to run on Nvidia GPUs [35]. Compared to open-source solutions such
as OpenCL, CUDA provides an experience tailored to Nvidia GPUs, including the
support for inline assembly using Nvidias PTX ISA. Due to this, CUDA can provide
significantly more functionality to the programmer that other GPU manufacturers
might not support. Examples are a clock function to measure time, a more accurate
consistency and memory model, more control over synchronization, support for
prefetching, different memory access types, and instructions to control caching
behavior. Each CUDA process running on the host has its own CUDA context.
The CUDA context contains all relevant process-specific CUDA information, such
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as the currently active device, GPU memory allocated, a virtual address space for
the GPU, and errors that previously occurred.

A subroutine that runs on the GPU is called a kernel. Kernels are mostly normal
C/C++ functions with a special specifier that defines whether they can only be
called from the GPU or from the host application and the GPU. To execute a
kernel, the host has to specify the number of blocks and threads per block. An
arbitrary number of arguments can be passed to kernels. Kernel functions can,
through defined variables, read out their block-ID and thread-ID, which can be
used to determine the data a thread is supposed to process. Code running on
the GPU does not have direct access to host memory. Therefore, data that is not
passed by value has to be copied into a previously allocated GPU buffer before
launching a kernel and back to the host afterward if data is supposed to be read.
Since a single call to a kernel can launch thousands of threads simultaneously, a
kernel can only return data by receiving a pointer as a function argument and
writing to it in the kernel.

Threads running in a kernel do not necessarily all run simultaneously, and code
should not depend on true parallelism. CUDA does not supply any locking
mechanisms, and it is highly discouraged to implement custom locks. Workloads on
the GPU should be designed to work in parallel on independent data most of the
time. However, CUDA does provide atomic operations on both float and integer
data types and functions to synchronize thread groups, similar to POSIX barriers.

Launching a kernel is a non-blocking operation that only schedules the kernel
to be executed on the GPU. The actual execution of kernels is asynchronous.
CUDA has functions that provide synchronization points that block until all
previously scheduled work on a CUDA context is complete. Commonly used
synchronization points are cudaMemcpy (copies data to and from the GPUs
DRAM), cudaCtxSynchronize (waits until all previous work is complete), and
cudaDeviceReset (destroys all allocations and resets the current context).

Due to the asynchronous nature of kernels, errors can not be directly returned
by them. Instead, following CUDA API functions that the host calls will return
any pending errors from previous kernel executions. Once such an error occurs,
all following CUDA API calls will return the same error, and kernel launches are
silently ignored for the current CUDA context until the context is reset.

CUDA only allows one CUDA context to run code on a GPU at a time. Kernels
should be designed to take advantage of as much of the GPU at a time as possible,
and executing multiple kernels in parallel is highly discouraged. To allow multiple
independent applications to access the GPU simultaneously, the GPU driver
implements time slicing by regularly interrupting long-running code.
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All Nvidia GPUs released over the last decade are compatible with CUDA, including
consumer GPUs. Nvidia achieves this through their intermediate assembly language
PTX [39] which is designed for GPU programming. Kernels are not directly compiled
to the GPU architecture they will be running on. Instead, they are compiled to
PTX assembly. The PTX assembly is then packed into the binary and compiled by
the CUDA library to the target architecture at runtime.

While Nvidia’s PTX ISA [39] is only a generic intermediate assembly language,
it is very closely related to Nvidias low-level assembly language SASS which
compiles directly to binary microcode that can be run on Nvidia GPUs. This extra
abstraction layer allows PTX to provide functionality that would usually only be
accessible through low-level assembly languages. Examples are specifiers for cache
operations for data movement instructions such as .cv (do not cache), .ca (cache
on all levels), .cg (cache only globally in the L2 cache), and .lu (last use, cache
with an evict first policy). While most of these specifiers are only hints, they are
usually not ignored by the compiler or architecture. In addition to extra flags, some
instructions do not have a function equivalent in CUDA, such as prefetch, which
requests a data load into a specified cache level, discard, which discards data from
the cache without saving it, and instructions to influence cache eviction policies.
Since PTX is not directly translated to machine code, it does not provide a fixed
set of registers but uses generic register allocation. Most computational operations
and register allocations have to provide a specific data type, such as float, binary
or unsigned. PTX is not simply translated to the closer to the hardware assembly
language SASS but is compiled to it, which includes very aggressive optimizations.

2.3.3 Vulkan

Vulkan is a modern cross-platform graphics and compute API developed by the
Khronos Group [16]. Initially designed as an OpenGL replacement and released
in 2016, Vulkan is not only highly optimized for graphics processing but also has
the capability of performing GPGPU tasks with compute shaders. It provides an
object-based design with execution states tied to command buffers, simplifying multi-
threaded programs compared to a global execution state. Memory management
and synchronization can be controlled by hand, and error checking can be enabled
and disabled at compile time, enabling significantly faster release builds while
providing high debuggability for production builds. Vulkans’ support of all major
GPU vendors and operating systems, and high performance, which is close to bare

metal, makes it a viable alternative to existing graphics APIs such as OpenGL and
DirectX.
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Unlike DirectX and OpenGL, Vulkan does not provide its own human-readable
shader language. Vulkan uses a bytecode format called SPIR-V for shaders to which
higher-level shader languages such as DirectXs HLSL [32] and OpenGLs GLSL [12]
can be compiled [11]. This extra level of abstraction provides a standardized and
generic way for storing shaders that does not depend on one human-readable shader
programming language. Vulkan supports many different shader types, including
vertex shaders, mesh shaders, geometry shaders, fragment shaders, and compute
shaders.

Compute shaders, in particular, allow for the processing of arbitrary information [16].
Code inside a compute shader is not required to do any rendering work. They
do not have a well-defined set of input values, and the number of executions can
be completely arbitrary, contrary to other shaders, such as vertex shaders which
are executed once per vertex. This highly customizable shader allows Vulkan
applications to take advantage of the GPU for generic programming tasks and
tasks which might not work very well in any well-defined part of a typical rendering
pipeline, such as particle systems or simulations. Due to this, compute shaders
provide functionality for shader code that might not make sense for any other
shader, including shared variables, fences for sequential consistency, and a basic set
of atomic operations.

2.4 AES

AES-128 is a modern cryptographic algorithm that consists of 10 rounds, with each
round performing the same operations except for the last round [7]. While many
modern x86 CPUs provide hardware support for AES through an instruction-set
extension, it is often still required to implement AES in software on processors
that do not provide such a feature. A single round consists of substitute bytes,
shift rows, mix columns, and add round key. Substitute bytes can be implemented
as a table lookup into a 256 B lookup table. Shift rows is a byte-wise shift. Mix
columns is a linear transformation over a finite field. Add round key is an XOR
with the round key. Shift rows, add round key, and substitute bytes are trivial
operations, while mix columns can be computationally expensive in software. To
improve performance, T-table implementations of AES combine substitute bytes,
shift rows, and mix columns into table lookups using precomputed tables and XOR
calculations.

Figure 2.7 shows the code for a typical round of an AES T-table implementation.
All tables hold the same values that are logically rotated by a different number of
bytes depending on the T-table. Table 0 is rotated by 0 bytes, table 1 by 1 byte,
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uint32_t tmpO = tableO[s0>>24] ~ tablel[(s1>>16)&0xFF]
~ table2[(s2>>8)&0xFF] ~ table3[s3&0xFF];
uint32_t tmpl = tableO[s1>>24] ~ tablel[(s2>>16)&0xFF]
~ table2[(s83>>8)&0xFF] ~ table3[s0&0xFF];
uint32_t tmp2 = tableO[s2>>24] ~ tablel[(s3>>16)&0xFF]
" table2[(s0>>8)&0xFF] -~ table3[s1&0xFF];
uint32_t tmp3 = table0[s3>>24] ~ tablel[(s0>>16)&0xFF]
" table2[(s1>>8)&0xFF] ~ table3[s2&0xFF];

sO = tmpO0 ~ roundkey [0];
sl = tmpl roundkey [1];
s2 = tmp2 roundkey [2];
s3 = tmp3 ~ roundkey [3];

Figure 2.7: Example code of an AES-128 round using T-tables. Each input byte
is used to index a T-table, and the resulting 4 B values are combined
with XOR into four 4 B values. At the end, the round key is added to
the four 4 B.

table 2 by 2 bytes, and table 3 by 3 bytes. This shift accounts for the shift rows
operation. At the beginning of a round, the current 128 bit state is split into 4
32 bit parts. For each byte of a given 32 bit part, a table lookup is performed using
one of the 4 T-tables each, resulting in four 32 bit values per 32 bit block which are
then XORed. The last step of the round is to apply the current round key. The
last AES round deviates from this slightly, only performing substitute bytes, shift
rows, and add round key, leaving out the mix columns step. Since all T-tables
contain the full AES S-Box, they can also be used for the last round by masking
the unwanted bytes using a logical AND [7].

2.5 Existing GPU Side-Channel Attacks

This chapter provides information about GPU attacks and papers related to our
findings discussed in this thesis.

GPU L2 cache attacks: Dutta et al. [8] propose an L2 cache covert channel
and Prime+Probe attack on a multi-GPU system through the NVLink interface.
They assume that the attacker and the victim are colocated on different GPUs
that are connected through NVLink. This makes it possible for the attacker to
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access the DRAM of the GPU the victim is currently running on. They leverage
this to perform a Prime+Probe attack on the victim by measuring for L2 cache
hits and misses when accessing data through NVLink on the victim’s GPU. Our
proposed attacks do not require more than one GPU and can even work on a single
GPU consumer system.

Naghibijouybari et al. [33] propose an L2 cache attack on single GPU systems
with Multi-Process Service (MPS) enabled. While similar to our work, MPS
makes it possible to run multiple kernels on a GPU in parallel through context
sharing. Enabling MPS can lead to a shared address space between kernels, and
true parallelism is only allowed for kernels launched by the same user. MPS is also
highly discouraged by Nvidia and disabled per default. Our attacks do not require
MPS and work between different applications running under separate users.

Karimi et al. [23] demonstrate cache attacks on integrated GPUs used on mobile
devices. They take advantage of the shared LLC cache between the CPU and the
integrated GPU to attack an AES T-table implementation.

GPU Shared memory attacks: There exist multiple papers that exploit the
GPUs shared memory by triggering bank conflicts. Jiang et el. [21] show an attack
on an AES T-table implementation running on a GPU that takes advantage of
the fast on-chip shared memory. They use conflicts that can occur when accessing
shared memory to build a timing attack that checks for such conflicts when an
encryption occurs by measuring the time an encryption takes. Through this timing
side channel, they can recover all 16 key bytes of an AES-128 implementation using
10 million samples. Our attack requires only 10 thousand samples for a full key
recovery. Jiang et al. [22] propose another timing attack that exploits bank conflicts
in shared memory on Nvidia Kepler, Maxwell, Pascall, Volta, and Turing GPUs.
Lin et al. [26] propose a scatter-gather-based mitigation to bank conflict-based
timing side channels for table-based AES implementations.
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Chapter 3

Cache Observations and Eviction
Set Search

In this chapter, we take a closer look at L2 cache access times and their relation
with cache sets, cache slices, and the physical layout of a GPU. We use the
gathered information to improve cache attacks significantly and reveal previously
undocumented parts of modern Nvidia GPUs.

First, we show how it is possible to measure L2 cache access times reliably using
both CUDA and Vulkan.

Second, we take a closer look at L2 cache access times in general and their relation
to the addresses accessed. Furthermore, we show how L2 cache timings on modern
Nvidia GPUs relate to cache slices.

Third, we look at fence timings in relation to SMs. Moreover, we show how these
metrics relate to the SM they are measured on and their relation to the physical
layout of a GPU.

Finally, we show how our gathered knowledge can be leveraged to build eviction
sets for the L2 cache on modern Nvidia GPUs. We propose an algorithm to build
eviction sets fast and efficiently without the need for physical addresses.

3.1 Timing Measurement

CUDA and GLSL provide a clock function that returns the current value of a
cycle counter. CUDA specifically does not only provide a clock function but also a
special register in their intermediate assembly language PTX. This special register
clock64 is a 64 bit large cycle counter which gives a precise value for clock cycles
since its last reset. The ease of access of this special register through basic move
instructions makes it convenient to work with, even when using PTX. According
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to our observations, CUDAs clock function and GLSLs clock ARB function read
out this special register on Nvidia GPUs.

The compilation step from PTX to SASS applies aggressive optimizations, including
instruction reordering and removal of unnecessary instructions. These optimizations
can be disabled in Nvidia’s CUDA toolkit. According to our observations, the
CUDA compiler only applies optimizations when compiling PTX to SASS, leaving
the compilation from C++ to PTX unoptimized. Due to this, we decided to leave
the optimizations enabled and tailor our attack kernel around them.

Algorithm 1 PTX L2 cache access time measurement code.

fence.sc.cta;

mov .u64 clkl, %%clock64;
fence.sc.cta;
1d.global.cg.£32 di, [addr];
add.f32 tmp, dl, tmp;
fence.sc.cta;

mov .u64 clk2, %%clock64;
fence.sc.cta;

Our measurement PTX code can be seen in Algorithm 1. We measure instructions
by reading twice from the clock64 register and surrounding each read with fences
to avoid instruction reordering. PTX has three different scopes for fences that each
provide a different level of sequential consistency:

e cta for sequential consistency on SMs
e gpu for sequential consistency throughout the whole GPU

e sys for sequential consistency throughout all GPUs running the current
program

Since our primary goal is to avoid reordering of instructions, cta fences suffice. For
memory accesses, we use the load instruction ld with the cache global modifier .cg.
The .cg modifier bypasses the .1 and only caches data in the L2. To avoid removal
of the load instruction by the compiler, we add the loaded value to a temporary
variable making it unlikely to be removed. This combination of carefully chosen
instructions makes L2 cache timing measurements without the need to disable
optimizations.

Algorithm 2 shows our GLSL measurement code. To measure time, we use the
clockARB function from a GLSL extension which provides a monotonically
incrementing 64 bit large counter similar to PTXs clock64 register [16]. To avoid
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Algorithm 2 GLSL L2 cache access time measurement code.

1 memoryBarrier () ;

2 uint64_t b = clockARB();

3 sum = atomicAdd (gpuBuffer.datalcur], sum);
4 atomicExchange (gpuBuffer.datalcur], sum);
5 uint64_t e = clockARB();

6 memoryBarrier () ;

reordering by the compiler, we surround the whole measurement block with memory
barriers. Contrary to PTX, there is no standardized way to specifically access
the L2 cache in GLSL. We use atomic operations provided by a GLSL extension
to force an L2 access. While on modern CPUs, atomic operations do not always
require an access to the LLC, according to observations using atomic operations
on Nvidia GPUs leads to consistent L2 cache accesses. Due to this, we use atomic
operations as a replacement for PTX’s cache global modifier. Similar to our PTX
measurement code, we use a temporary variable to which we add the value at the
memory location that we access. This use of the data at the target address and an
assert later in the code prevents the compiler from removing the L2 cache access.

While CUDA provides a lot of flexibility and even has the option to write inline
assembly, a shader language such as GLSL has its advantages. Context switches are
expensive, and CUDA applications focus on fast parallel computations that use the
whole GPU. According to our observations, CUDA applications get interrupted less
often if only CUDA applications are running, switching between running kernels
only about every second. Graphics applications are often more time-sensitive, and
there can be multiple applications at a time that require GPU time. Shaders are
scheduled more often for shorter periods, even if CUDA kernels are running. An
attacker application that uses Vulkan shaders is scheduled much more frequently
on the GPU, simplifying the extraction of information and providing a significant
advantage for most attacks.

To differentiate between L2 cache hits and cache misses, we need to know how many
cycles each approximately take. We measured a 6 MB region in 128 B increments
which is the exact cache-line size on Nvidia GPUs. To measure cache hits, we
separate the memory region into smaller chunks of 128 kB and repeatedly measure
the access timings when iterating over the memory chunks. 128 kB is significantly
smaller than the L2 cache but too large for the L1 cache on our RTX 2070. Due to
this, almost all memory accesses after the first iteration should result in L2 cache
hits. For the cache misses, we iterate over the whole 6 MB at once multiple times
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Figure 3.1: L2 cache hit and miss timings of an RTX 2070 GPU. The cache hits
are at around 225 cycles, and the cache misses at around 475 cycles.
There is a clear difference between the cycle counts of a cache miss and
a cache hit of over 200 cycles.

and measure the access timings. Since 6 MB is significantly larger than the 4 MB
available, the memory accesses should result in cache misses.

The results of these measurements are shown in Figure 3.1. We can see a clear
distinction between L2 cache hits, which are located at around 200 cycles, and
cache misses, which are located at around 450 cycles.

3.2 L2 Cache Timings

To measure L2 cache timings, we use our measurement approach described in Sec-
tion 3.1. In Figure 3.2 we show the L2 cache access timings over a range of 128 kB
on an RTX 2070 GPU starting at a 2 MB page boundary. While there is no one
constant L2 cache access time, all measurements are in a 20 cycle range and depend
on the address. All of our measured L2 cache timings stay the same within every
256 B block. The timings are highly consistent on all tested GPUs, even with other
applications running in parallel to our measurement application. According to our
observations, three measurements suffice for an accurate timing value. We assume
this to be the case due to the restriction that modern Nvidia GPUs only run one
application at a time on a given GPU.

Figure 3.3 contains a histogram of the L2 cache access timings from Figure 3.2.
Multiple groups of 64 cache lines have the same access timing, and other groups
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of access times, with each bucket containing 64 measurements. This
distribution indicates a hardware division of the cache lines into groups.
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Figure 3.4: Average L2 cache access times for randomly chosen addresses and
addresses from the same cache slice on an RTX 2070. For random
addresses, the average access time stays constant throughout the 256 kB
at around 240 cycles. For addresses with the same L2 cache timings, the

average access times indicate primarily cache misses for measurements
with more than 128 kB.

consist of a multiple of 64 cache lines. Due to this, we assume a division of the L2
cache into 32 equal parts, which affects the access times, similar to cache slices on
modern CPUs. To confirm our assumption, we iterate over an increasing number
of cache lines similarly to our previous measurements and average the access times
for each iteration. We do this once for randomly chosen addresses and once for
addresses with the same L2 cache access time.

The results of the measurements are shown in Figure 3.4. The average access times
for random addresses stay around 235 cycles throughout the 256 kB measurement
region, indicating mostly L2 cache hits. The average access times for our specifically
picked addresses with the same L2 cache access times stay at 224 cycles for the
first 100 kB, which indicates primarily L2 cache hits. After this, they increase
drastically to around 490 cycles, indicating primarily L2 cache misses. This sudden
shift in access times after only 100 kB indicates that addresses with the same L2
cache access timings map to the same part of the L2, which is full after around
128 kB on our RTX 2070. Due to the similarities of these cache line groups to cache
slices on CPUs, we will refer to them as cache slices. While the knowledge of this
cache split on GPUs might not be important for everyday applications, it can be
beneficial for an attacker trying to fill up cache sets.

All previous measurements come from the same SM, and multiple independent
measurements yield the exact same number of cycles on average when accessing
the L2 cache. Figure 3.5 shows the average L2 cache access time over a 256 kB
memory region for each of the 36 SMs of an RTX 2070. The exact instructions
measured are a fence, a store instruction to the memory location, and another
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Figure 3.5: Average L2 cache access times for each SM on an RTX 2070.

fence to ensure that the store instructions are completed before the end of the
measurement. According to our observations, the L2 cache access timings depend
on the SM. While the access timing pattern for the addresses measured is the same
on all SMs, meaning that addresses that are fast on one SM are fast on all SMs,
similar to our previous measurements shown in Figure 3.2, the precise timings vary
significantly between SMs.

We measured a 50 cycle difference in cache access times between the fastest and the
slowest SM. To determine the exact reason for the timing differences, we measured
the two fences independently without the store, as shown in Figure 3.6. Fences
ensure that changes made to memory propagate through certain parts of the GPU
and, for some fences, even to the host memory. In our case, we measured GPU
fences, ensuring that memory changes are visible to all other SMs. As shown
in Figure 3.6, the time a fence takes to propagate the changes through the whole
GPU depends on the SM the fence is executed on. According to our measurements,
there are groups of 6 SMs each, on which fences exhibit the exact same timing
behavior.

Subtracting the fence timings from our measurements in Figure 3.5 results in a
much more consistent pattern for the SMs, as shown in Figure 3.7. The average,
minimum, and maximum access timings for each SM, as shown in Figure 3.7, show
a repeating pattern with three different values for the minimum and maximum
access timings. We measured significantly faster overall memory access timings
for 12 of the 36 SMs present in our RTX 2070. The other 24 SMs have the same
average L2 cache access speed but can be split into two groups of 12 when looking
at their minimum and maximum access timings. Due to these highly consistent
results, we assume that both the L2 cache access times and fence times correlate
with the physical location of a given SM on the GPU, as shown in Figure 2.4. We
assume that the groups of 12 SMs, when grouping by L2 cache timings, correlate
with the GPC a given SM belongs to. We assume that the 12 fastest SMs are
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Figure 3.6: Average GPU fence timings for each SM on an RTX 2070. Groups of
six SMs with consecutive IDs show the same timing behavior.

located in the middle GPC, which might have a faster connection to the L2, and
the other two groups of 12 SMs are located in the two outer GPCs, due to them
showing the same average access timings. Since there are always groups of two
SMs with IDs next to each other that show the exact same timing behavior, we
assume that they belong to the same TPC since each TPC holds exactly two SMs.
The fence timings we assume correlate with the TPC an SM is located in. There
are precisely 6 TPCs within a GPC, which correlates with our measurements seen
in Figure 3.6 and also fits our assumption that the L2 cache timings correlate with
the GPC. To confirm our assumptions, we repeated similar measurements on an
RTX 3070 Ti, consisting of 6 GPCs with 4 TPCs each. Our measurements resulted
in 6 groups of 8 SMs when grouping through only L2 cache access timings and 4
groups of 12 SMs when grouping by fence timings which perfectly fits the physical
layout of an RTX 3070 Ti.

3.3 Eviction Set Search

A traditional Prime+Probe attack requires eviction sets that fill up the cache sets
that the attacker wants to monitor. Since the GPUs L2 cache is physically indexed
and physically tagged, it is not possible to directly compute the eviction set from
virtual addresses alone. To combat this issue, we propose building eviction sets by
carefully monitoring cache hits and misses that is similar to an existing algorithm
proposed by Liu et al. [28]. Furthermore, we apply optimizations to the algorithm,
which are possible due to the low noise level of cache timing measurements on
GPUs. We start by allocating a big enough chunk of memory larger than the
whole L2 cache. For our RTX 2070, with a 4 MB L2 cache, a memory size of 6 MB
worked well for our measurements, which is exactly one memory page larger than
the L2 cache. As a preprocessing step, we measure the L2 cache access speeds of all
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Figure 3.7: L2 cache access times minus the GPU fence timings for each SM on an
RTX 2070. We can observe a clear distinction between three different
equally sized groups of SMs, colored in green, yellow, and black, through
the minimum and maximum timings. Pairs of two SMs with IDs next
to each other show the same timing behavior.

Algorithm 3 Eviction Set Search

function EVICTIONSETSEARCH(slice)
sets < [ ]
while size(slice) > 17 do
pool < slice
p < pop random element from pool
while size(pool) > 17 do
el + pop front from pool
Pmiss < getMisses(pool, p)
if not p,,;ss then
pool < pool + el
end if
end while
if isSet(pool) then
filterElements(slice, pool)
sets < sets + [pool]
end if
end while
return sets
end function
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128 B chunks in our allocated memory region and sort the addresses into buckets
according to them. The access time of each 128 B block correlates with its cache
slice. We can decrease the amount of memory that needs to be checked at a time
by grouping the memory using their L2 cache access timings and checking each
group independently.

An overview of the basic eviction set search without optimizations is shown in Al-
gorithm 3. We start by picking one of our pre-grouped memory buckets and group
them into what we refer to as a search pool. All 128 B blocks within a bucket
usually only belong to one cache slice. We iterate over the addresses in our chosen
bucket multiple times and measure the access timings after the first iteration. Since
our 6 MB memory region used for the eviction set search is significantly larger
than the L2 cache, and this bucket should contain almost all memory addresses
of a given slice, this should result in 1.2 cache misses for all addresses measured.
Addresses that produce cache hits due to measurement errors in the previous steps
can be filtered out and sorted back into their according buckets. After confirming
that all addresses produce a cache miss when iterating over them multiple times, we
choose a random pivot element. With a pivot element chosen, we remove addresses
from our measurement pool one at a time. After removing an address, we search
for L2 cache hits when iterating over the whole address pool multiple times. If
any accesses to the current pivot element result in cache hits after removing an
address, this indicates that the removed address most likely maps to the same
cache set as the pivot element. In this case, we re-add the removed address back
to the pool. We repeat this address removal until only 17 addresses are left in the
pool, including our pivot element. These 17 addresses map to the same cache set,
and 16 of them form an eviction set for the cache set. While on modern CPUs,
eviction set sizes larger than the cache set size are common, the very strict LRU
eviction policy on Nvidia GPUs allows for a 100% eviction rate with an eviction set
that is exactly the size of a cache set. Next, we remove all addresses that are part
of an eviction set from their address bucket. If an incorrect address is removed
during the search for an eviction set due to a measurement error and the removal
of addresses stalls, we re-add all addresses from the initial bucket, select a new
pivot element and try again.

Once an eviction set is found, we use it to filter out addresses in all remaining
address buckets that map to the same cache set. This filtering can be achieved
by accessing the 16 addresses from the eviction set and, afterward, the address
that is supposed to be checked. If, after multiple repetitions, all accesses result in
cache misses, we can be certain that the address maps to the same cache set as the
evictions set and remove it from its bucket. We repeat the selection of a pivot and
search for an eviction set containing it until the current bucket is either empty or
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smaller than a complete eviction set. Once this is the case, we move the remaining
addresses to the closest bucket, on which we repeat the same process. We search
the buckets in order of their L2 cache access times. This way, addresses that were
sorted into an incorrect bucket during the initial sorting phase can be moved to
the next best bucket.

The search algorithm can be improved further by monitoring not only the access
timing of the pivot element after each iteration but the access timings of all
addresses in the current search pool. We propose to check for cache hits in the
remaining addresses in the pool after an address was removed and remove them
as well. Since the access of these addresses resulted in a cache hit, even though
the access to the pivot resulted in a cache miss, and the L2 cache follows an LRU
eviction policy, it is highly unlikely that they map to the same cache set as the
current pivot. Furthermore, we propose to check for the number of addresses that
are removed from the search pool through this optimization. If the number of
removed addresses combined with the initially removed address is 17, then they
most likely map to the same cache set and can be used as an eviction set. To
check if this is the case, we can iterate over these 17 addresses multiple times and
measure the access time. If the accesses after the first iteration result in cache
misses for all addresses, then 16 of them can be used as an eviction set. If such a
set is found, we can again search for other addresses mapping to the same cache
set in all the buckets and remove them from the search space.

Once all the buckets are empty, there should be one eviction set for each cache set
in the L2 of the GPU. For an RTX 2070, this results in 2048 eviction sets. While
DRAM accesses are extremely slow, and our search algorithm relies on achieving
as many of them as possible, due to our algorithm searching through a few slices
at a time and the further improvements we introduced when searching for eviction
sets within a slice, recovering an eviction set for all cache sets on an RTX 2070 can
be achieved within roughly 10 minutes.
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Covert Channel

In this chapter, we propose a Prime+Probe-based cache covert channel running on
modern Nvidia GPUs that works with CUDA, OpenGL, and Vulkan to transmit
data between two completely independent users as long as their applications run
on the same GPU. We take advantage of the L2 cache in modern Nvidia GPUs
to transfer data between two GPU applications without any shared memory. We
are able to achieve a transfer rate of 2.5kB/s even though the sender and receiver
cannot be scheduled on the GPU in parallel.

4.1 Transmission Protocol

The transmission of a single bit with the value 1 over a cache set is shown in Fig-
ure 4.1. The receiver loads a cache line into a cache set and regularly checks the
access time. To send a 1, the sender evicts all currently present cache lines in the
cache set. The receiver detects that a 1 was sent if an access to the initially loaded
cache line results in a cache miss.

To transmit data, we take advantage of the eviction sets from Section 3.3. The
main challenge for our covert channel is the initial connection establishment and
agreement on channel parameters, namely the precise cache sets used for the
connection. Since the receiver and the sender are independent applications with
independent GPU virtual address spaces finding an eviction set in both applications
that maps to the same cache set without any direct data exchange can be challenging.
We propose a simple protocol for the transmission channel establishment.

Before a transmission can be established, both the receiver and the sender build
eviction sets, with our algorithm described in Section 3.3. The receiver builds an
eviction set for all cache sets on the GPU, while the sender needs an eviction set for
each cache set directly used for the transmission channel. Since the sender always
evicts all cache lines in a set, the receiver needs only one address per eviction set.
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Figure 4.1: Transmission process of a single bit with a value of 1. First, the receiver
loads a memory location into the cache. Second, the sender evicts all
cache lines in the cache set. Last, the receiver checks if its memory is
still in the cache.

Once the eviction sets are complete, the receiver awaits incoming connections by
monitoring all cache sets for full cache-set evictions.

Sender: To start a connection, the sender picks an eviction set for sending
control signals. This chosen eviction set is used for initializing the connection and
confirming finished packages. The sender sends a 1 over the control set 10 times
with pauses in between to allow the receiver to receive the information. Following
this, the sender evicts the cache sets for the data transmission with pauses to
allow the receiver to detect one complete cache eviction at a time. The delay is
necessary to convey the order of the cache sets to the receiver. After this, the
initial channel setup is complete, and the sender can start the data transmission.
We decided to use 32 cache sets for data transmission to allow for the transmission
of 4B at a time. We use only a tiny part of the overall number of cache sets,
which can be increased significantly to increase the throughput and to establish
multiple connections simultaneously. To send data, the sender splits the data into
4 B chunks and transmits them one by one. For each of the 4 B the sender evicts
the cache sets for which the data chunk bits are 1 and signals the control channel
to let the receiver know that the package is complete. Once a chunk is sent, the
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Figure 4.2: Channel capacity and bit-error rate in relation to the time the sender
waits after each package transmission on an RTX 2070.

sender waits a short period, usually only a few hundred microseconds, to allow
the receiver to read the data chunk. The first 8 B in a transmission consist of the
number of data bytes that are going to be transmitted through this new channel.
Following this is the data. Once the transmission of the last data chunk is complete,
the sender stops without transmitting any termination sequence.

Reciever: The receiver awaits a connection by monitoring all L2 cache sets on
the GPU. Once the receiver detects 10 complete cache-set eviction on the exact
same cache set in succession without any other complete set evictions, it saves the
corresponding eviction set as the control set. Following the control set, the receiver
expects 32 complete cache-set evictions from distinct cache sets precisely one at
a time. The evicted cache sets are saved as the data transmission sets in order
of their detection. If, at any time during this initialization step, more than one
complete cache set is evicted at a time, the receiver transitions into the initial state
and waits again for incoming connections. With the setup complete, the receiver
starts receiving data packages. To receive data, the reciever checks for full cache-set
evictions of the data sets and the control set. Initially, a package is assumed to
be 0. If a data set is evicted, the corresponding bit is changed to a 1. When a
complete eviction of the control set is detected, the package is complete, the data

is saved, and the reciever starts their measurements for the next data package.

The first 8 B are interpreted as the overall transmission size and determine how
much data the receiver expects. Following is the actual data. Once the initially
agreed-upon number of bytes is received, the receiver transitions back to listening
for incoming connections.
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Figure 4.3: Covert channel example transmission. The sender pulses a 1 ten times
on the control set to initialize the connection, followed by a 1 on the
four data transmission sets. Afterward, two 4 bit packages are sent by
pulsing the channels corresponding to a bit value of 1 and the control
set.

The time the sender waits after transmitting a package significantly impacts the
transmission rate and the package loss. The bit-error rate of our covert channel
in relation to the sender’s wait time on an RTX 2070 is shown in Figure 4.2. The
error rate decreases from 0.3 at a wait time of Ops to an error rate of 0 at 170 ps.
All wait times higher than 170 ps result in no bit-errors. The channel capacity C'
can be calculated with

C=T-(plogyp+ (1—p)logy(1—p)+1)

where T is the transmission rate, and p is the bit-error probability [6]. The channel
capacity of our covert channel compared to the bit-error rate with different sender
wait times is shown in Figure 4.2. We keep the wait times for the initial channel
setup constant at 200 ms since the receiver has to scan all cache sets in the setup
phase, and this wait time worked consistently throughout our measurements. The
channel capacity peaks at 120 s with 2.5kB/s with a bit-error rate of 0.134%.
Afterward, the channel capacity decreases due to the higher wait time of the sender.
We use a wait time of 120 ps since it results in the highest channel capacity.

An example of a data transmission on a simplified version of our covert channel
with 4 cache sets for data transmission is shown in Figure 4.3. The start of the
initialization sequence can be seen in the first cache set, where a 1 is sent 10 times
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Figure 4.4: Histogram of the cache capacity of our covert channel over 8000 trans-
missions. Our covert channel has a capacity of 2480.7 &+ 52.3 B/s.

in a regular interval to indicate the beginning of a transmission. 10 complete
evictions of only one particular cache set in a short period is a pattern that is
extremely unlikely to happen in a normal program, making it a perfect indicator
for a starting connection. Right afterward, the other four cache sets used for data
transmission are evicted one at a time, with a pause in between to give the receiver
time to check the GPUs cache. Next, two packages are sent. The first package
with a value of 1 (0b0001), where only the first data set is evicted, and later the
control set, which finishes the package transmission. The second package with a
value of 12 (0b1100), where first the third data set is evicted, then the fourth data
set, and at the end, the control set to finish the package transmission.

4.2 Evaluation

All our measurements were taken in an environment where no other applications
were running on the GPU at the time of transmission. Due to the sender waiting
after every transmitted package and the receiver constantly probing the cache,
there is no extra need for extra synchronization besides the control channel to
indicate a finished package. We achieve data transmission rates of 2480.7 + 52.3
B/s after measuring 8000 independent data transmissions, as shown in Figure 4.4.
We use 33 out of 2048 cache sets available on our RTX 2070 and RTX 3070 Ti. The
overall transmission speed could be significantly increased by employing more cache
sets to allow for parallel data transmission and switching to an acknowledge-based
transmission protocol. While significantly higher transmission rates are possible,
our covert channel proves that data transmission at a high rate through cache
evictions on modern Nvidia GPUs is possible.
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Chapter 5

AES Key Recovery

In this chapter, we propose an attack on an AES T-table implementation written
in CUDA. Due to the high parallel throughput achievable on GPUs, GPGPU is
becoming more and more viable for encrypting enormous amounts of data and can
even outperform hardware-accelerated AES on modern x86 CPUs given enough
data [29].

First, we show how it is possible to build eviction sets for the T-tables of an AES
implementation on a GPU without access to physical addresses or the address space
of the target application. For this, we propose Prime+Count, a more powerful
version of Prime+Probe that takes advantage of a predictable LLC replacement
policy to recover the exact number of cache lines evicted by the victim.

Second, we propose a simple first-round attack that recovers 48 bits of the full
128 bit AES-128 key. We achieve this with a known-plaintext attack by monitoring
memory accesses to the T-tables and inferring the key bits through them.

Finally, we present a full AES-128 key-recovery attack using Prime+Count on
a GPU with the target and attacker code running in two completely different
processes under two separate users. We compare our Prime+Count implementation
with Prime+Probe and discuss our new attack’s advantages and disadvantages.

5.1 Eviction Set Search

To perform an attack on T-tables, we first need to find eviction sets that cover the
cache sets of the target application’s T-tables. Since direct access to the target
application’s physical addresses is impossible, we propose an online approach to
search for the required eviction sets. We assume that we can request encryptions
from the victim with an attacker-provided key and plaintext. We leverage this
encryption oracle to create known accesses to certain parts of the T-table.
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We start by building eviction sets using our algorithm described in Section 3.3. A
typical T-table implementation uses four tables consisting 256 distinct 32 bit values
each. Since the cache-line size on recent Nvidia GPUs is 128 B, this means that
eight cache lines cover one table assuming the tables are aligned to 128 B. Usually,
memory addresses next to each other map to different cache sets, meaning we need
eight eviction sets per table.

To simplfy our search, we use a zero key for the encryptions. We target the T-table
accesses for the first round of AES. Since we use a zero key, the first round key
is also zero. With a zero first-round key, each T-table access in the first round
directly uses the plaintext bytes as indices.

We construct the plaintext for an encryption by setting a byte that is used with
the target T-table to a value from 0 to 255 and randomizing the rest. For the Oth
T-table, this would be the Oth plaintext byte. Before each encryption, we load all
members of the eviction sets into the L2 cache by accessing them. Next, we request
an encryption for our constructed plaintext. Once the encryption is complete, we
access each eviction set in reverse order and measure the L2 access timings. We can
determine through the access timings how many cache lines were evicted. This is
possible due to the strict LRU L2 cache eviction policy. By accessing the eviction
set members in reverse order, we avoid evicting further elements of the eviction
set while being able to determine the exact number of evicted cache lines. We
call this technique Prime+Count. Contrary to traditional Prime+Probe, where
only the access to a cache set is detected, Prime+Count can recover the exact
number of cache lines loaded by a victim. Prime+Count requires less fine-tuning
of the eviction set than Prime+Probe while providing more information about the
victim’s execution. The number of evicted eviction set members is saved together
with the byte chosen for the plaintext. We repeat this a few hundred times for
each chosen byte value.

If an eviction set does not map to a cache set of the target T-table, the average
number of evictions stays constant independent of the chosen plaintext byte. If an
eviction set does map to the same cache set as a part of the target T-table, the
average number of evictions is higher for some chosen plaintext byte values and
lower for others. For the correct eviction sets, there should always be a continuous
range of 32 plaintext byte values for which the number of average evictions is
slightly higher than for other values. Examples of this are shown in Figure 5.1.
This figure shows the average miss rate of eight eviction sets after a few thousand
encryptions for each plaintext byte. The first eviction set has an average miss rate
that is 0.005 higher for the plaintext bytes 0 to 31, indicating that it maps to the
same cache set as the first 128 B of the target T-table. The second eviction set has
an average miss rate that is 0.005 higher for the plaintext bytes 32 to 61, indicating
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that it maps to the same cache set as the second 128 B of the target T-table. The
probability that the target part of a specific T-table is not accessed each time it is
used is %, and assuming that we only control one access throughout the whole AES

encryption and that all others are random, this gives us (%)4*%3 = 0.00547 as the
probability that the monitored T-table part has not been accessed by any other
part of the encryption. This probability fits our measured miss rate difference of
0.005. On a typical modern x86 CPU with a cache line size of 64 B the probability

s (2)"%% = 0.0807.

To find these patterns for each of the 32 plaintext value chunks, we compute an
average over the average miss rate of the target 32 value area and an average over
all other plaintext miss rates. We use the difference between these two averages
for each of our 2048 eviction sets as a metric to determine the correct eviction
sets. A good eviction set candidate for the target T-table part is the eviction set,
where this difference is the largest. We compute the currently best eviction set
candidates for the target T-table every 100 encryptions for each plaintext byte.
Once the candidates converge to eight distinct eviction sets, we assume to have
found the correct eviction sets. We repeat this process for each of the four T-tables
using a different part of the plaintext for the chosen plaintext byte values. This
results in eight eviction sets for each of the four T-tables.

5.2 First-Round Attack

In this section, we demonstrate a first-round attack on an AES-128 T-table im-
plementation running on a GPU using Prime+Count. We demonstrate that it is
possible to recover 48 bits of the 128 bit AES key from a completely different process
only using known plaintext. To achieve this, we leverage our eviction sets found
in Section 5.1 and measure multiple AES-128 encryptions with known plaintext
but unknown key. By measuring the number of evictions in each set and combining
it with the known plaintext for each of the encryptions, we are able to infer 3 bits
of each key byte.

To start our attack, we build eviction sets for all four AES T-tables using our
method described in Section 5.1. After the setup is complete, we start measuring
encryptions. Similar to our eviction set search, we first load all eviction set
members into the L2 cache of the target GPU. Contrary to the eviction set search
in Section 5.1, there are only eight eviction sets for each T-table left, speeding up
measurements significantly. Once all eviction set members are loaded, we wait for
an encryption. After an encryption, we use Prime+Count and save the number of
evictions for each set together with the plaintext used for the encryption. We repeat

38



CHAPTER 5. AES KEY RECOVERY

Figure 5.1:

oy
Plaintext Byte

The average number of evicted cache lines of eight eviction sets that
cover one whole AES T-table in relation to the chosen plaintext byte.
The evictions for each set are 0.005 for the part of the T-table that the
eviction set covers.
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Figure 5.2: Eviction set cache miss heatmap for a key where the upper 3 bits of
a key byte are zero. The average miss rate is 0.005 higher when the 3
most significant bits of the plaintext byte are the same as the cache set
ID.

these measurements and collect plaintext and cache miss values of encryptions
using the unknown target key.

Each T-table is indexed by four plaintext bytes XORed with the corresponding
key byte independently in the first round. Since the cache lines on modern Nvidia
GPUs have a size of 128 B, it is only possible to detect which part of the target
T-table a given encryption accessed. This means that it is only possible to recover
3 bit of each key byte, and the recovery can only be done on a key byte granularity.

To recover a part of the key, we use the plaintext byte that is XORed with the
target key byte and its corresponding T-table eviction sets. We start by sorting the
encryptions into 256 buckets using the plaintext bytes value. Next, we compute
the average cache misses of each possible plaintext byte for each eviction set. For
each plaintext value block of 32 values, we compute the average cache misses for
the block and subtract it from the average number of cache misses for all other
plaintext byte values. We repeat this for each of the eight eviction sets. Afterward,
we search for the eviction sets that maximize this difference for each block. Since
there are precisely eight eviction sets per T-table and eight blocks for which we
want to find the maximum difference, each eviction set should be the maximum for
precisely one of these differences.
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Figure 5.3: Eviction set cache miss heatmap for a key where only bit 5 (0b0010000)
of the key byte is set.

The key bits can be extracted from the correlation between the eviction sets and
the plaintext bytes. Figure 5.2 shows the average evictions of our eight eviction
sets for each key byte for a zero key. The x-axis shows which 8th of the T-table
corresponds to which eviction set, and the y-axis shows the plaintext byte. With a
zero key, the plaintext byte is directly used as an index into the T-table. Therefore,
resulting in a clear correlation between the plaintext chunk that maps to an eviction
set and the part of the T-table the eviction set covers.

Figure 5.3 shows a key where in the upper 3 bits of the targeted key byte, only
the least significant bit is set (0b00010000). We can still observe plaintext byte
chunks of 32 values that map to a distinct eviction set, but the mapping is not the
same as the mapping to the T-table part covered by the eviction set, as shown
in Figure 5.2. The key byte XOR the plaintext byte is used to index into the
T-table, and the cache miss rates reflect this correlation. When looking at the first
part of the T-table, it is accessed for plaintext bytes 32-63 with the non-zero key
instead of the zero-key range of plaintext bytes 0-31. The key-byte bits can be
recovered by XORing the plaintext byte range, a T-table part is accessed in, with
the part it covers of the T-table.
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Figure 5.4: Distribution of the number of encryptions measured until the correct last
round key is recovered over three thousand attacks. The attack requires
11773 + 1443 encryptions to recover the full key for Prime+Count and
7466 + 451 for Prime+Probe.

5.3 Last-Round Attack

In this section, we propose a last-round attack on an AES-128 T-table implementa-
tion running on a GPU using Prime+Count. We show that it is possible to recover
the full 128 bit AES key from a different process only using known ciphertext.

Contrary to the first-round attack from Section 5.2, we propose a last-round
attack that is able to recover the complete last-round key. Our attack is based on
Briongos et al. [4]. While the last-round key of AES-128 is not the key itself, it can
be trivially reversed to the key as long as the whole last-round key is known [7].

Similar to the first-round attack, we start the attack by building eviction sets
for all four AES T-tables using our method, as described in Section 5.1. Once
the setup is complete, we measure encryptions similar to Section 5.1 and store
the number of evictions for each cache set together with the ciphertexts until a
sufficient amount of encryptions were measured. If the recovered encryption key is
incorrect, the result can be refined by measuring more encryptions. Our attack
requires 11773 4 1443 encryptions to recover the full key. The exact distribution of
the number of encryptions required is shown in Figure 5.4.

In the first-round attack, we go forward through the AES encryption to the
beginning of the first round directly after the first-round key was added and,
therefore, to the first T-table access. In the last-round attack, we go back from the
end of the AES encryption one round to the beginning of the last round and the
corresponding T-table accesses. We do this one byte at a time to recover the whole
last-round key.

To recover a key byte, we first guess the byte. We then go through all measurements
and reverse the last round for the ciphertext byte that corresponds to the position

42



CHAPTER 5. AES KEY RECOVERY

= 1,500 |
=
8
P 1,000 |- =
o
£ 500 3
wn
0 | | | |
10 12 14 16 18 20 22 24
Time (s)

Figure 5.5: Distribution of the time until the correct last round key is recovered
with Prime+Count over 25 thousand attacks. The attack requires
15.988 4+ 1.960s to recover the full key.

of key byte guessed. This can be done by calculating the XOR of the key byte
guess and the ciphertext byte and applying the inverse AES S-Box to the result.
The resulting value is our guess for the byte used to index a T-table. Next, we sort
the measured cache misses from the eviction sets corresponding to the targetted
T-table according to the computed byte. Similar to the first-round attack discussed
in Section 5.2, we average the cache misses for each eviction set. A correct key
byte guess looks similar to our measurements from the initial eviction set filtering
shown in Figure 5.1, with the byte used to index the T-table corresponding to the
plaintext byte. If the key byte is correct, on average, there should be more cache
misses in the value range covered by the eviction set. We can leverage this fact
as a metric to determine which key byte is the most likely to be correct. We take
the average miss rate for the value range an eviction set covers and the rest and
compute the difference. We sum up the resulting eight differences and use them
as a metric for how likely the guessed key byte is correct. We repeat this process
for the remaining possible key byte values. The key byte guess with the highest
accumulated difference is the correct key.

We repeat the key byte recovery for all last-round key bytes to obtain the complete
last-round key. To obtain the AES-128 key, we take the recovered last-round key
and reverse the key schedule. The recovered key can be checked for correctness if
a plaintext-ciphertext-pair is known. If the key is incorrect, the key guess can be
refined by measuring more encryptions and repeating the offline recovery phase.
The initial setup of searching for the correct eviction sets, described in Section 5.1,
can take one to two hours. The key recovery takes 15.988 4+ 1.960s due to the small
number of eviction sets that need to be monitored during the attack and the small
amount of ciphertexts required to recover the key. The exact runtime distribution
is shown in Figure 5.5. In Figure 5.4 we compare our last-round attack using
Prime+Count with Prime+Probe. We simulate Prime+Probe with Prime+Count
and a threshold of 5 evictions. If more than 5 cache lines are evicted, we count it
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as an access when using Prime+Probe. This results in Prime+Probe requiering
7466 4 451 encryptions and Prime+Count requiring 11773 4+ 1443 encryptions.
Prime+Count requires slightly more encryptions than Prime+Probe in our test.
While Prime+Count is an inherently stronger attack than Prime+Probes, since it
can provide significantly more information, our use of averages makes the last-round
attack more susceptible to outliers. The advantage of Prime+Count in this attack
is that it requires no fine-tuning of the eviction sets compared to Prime+Probe,

simplifying the initial setup.
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Chapter 6

Conclusion

In this thesis, we showed that cache attacks on modern Nvidia GPUs, even in a
single GPU environment, are both possible and practical. We show that there is
a clear correlation between the cache layout and cache access timings on Nvidia
GPUs. By taking advantage of this correlation and the low noise of cache access
timings, we were able to create an algorithm for building eviction sets that can find
an eviction set for all L2 cache sets within a matter of minutes. Furthermore, we
took a closer look at fence timings and cache access timings and found a correlation
with the physical layout of Nvidia GPUs. We built a Prime+Probe-based cache
covert channel that can transfer data at a speed of 2.5kB/s. Our covert channel
works on a single GPU between two completely independent applications running
under different users. Finally, we proposed a Prime+4Count-based first-round attack
that can recover 48 bits of the AES-128 key and a last-round attack that can recover
the full 128 bit AES key of an AES-128 implementation running on Nvidia GPUs.
The last-round attack requires 11773 + 1443 encryptions and 15.988 4 1.960s to
recover the full key.
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